www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius mit Vektor
Konvergenzradius mit Vektor < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius mit Vektor: r bei einer Potenzreihe
Status: (Frage) beantwortet Status 
Datum: 22:18 Di 08.05.2007
Autor: Canard_Sauvage

Aufgabe
[mm] \summe_{i=1}^{\infty} \vektor{\alpha \\ n} \* x^{n} [/mm]

Ich stelle mich sonst nicht so bratsch an, aber diesmal habe ich einfach ein Problem beim verstehen der Aufgabe. Also es geht um das bestimmen des Konvergenzradius der oben stehenden Potenzreihe. Ansich ja nicht schwer, aber ich verstehe den Vektor in der Aufgabenstellung einfach nicht.

Die Formel für den Konvergenzradius ist mir bekannt, habe ich schon öfters gemacht, aber der Vektor irritiert mich einfach. Habe auch die Lösung der Aufgabe, wäre nett, wenn mir jemand einfach einen kleinen Schups geben könnte.

r = [mm] \limes_{n\rightarrow\infty} [/mm] = | n+1 / [mm] \alpha [/mm] - n| = 1 also |x|<1

        
Bezug
Konvergenzradius mit Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Di 08.05.2007
Autor: felixf

Hallo!

> [mm]\summe_{i=1}^{\infty} \vektor{\alpha \\ n} \* x^{n}[/mm]
>  Ich
> stelle mich sonst nicht so bratsch an, aber diesmal habe
> ich einfach ein Problem beim verstehen der Aufgabe. Also es
> geht um das bestimmen des Konvergenzradius der oben
> stehenden Potenzreihe. Ansich ja nicht schwer, aber ich
> verstehe den Vektor in der Aufgabenstellung einfach nicht.

Vielleicht kommst du weiter, wenn du weisst, dass dies kein Vektor, sondern ein verallgemeinerter Binomialkoeffizient ist :-)

Die Definition davon ist (IIRC) [mm] $\binom{\alpha}{n} [/mm] := [mm] \frac{\alpha (\alpha - 1) (\alpha - 1) \cdots (\alpha - n + 1)}{n (n - 1) (n - 2) \cdots 2 \cdot 1}$. [/mm]

LG Felix


Bezug
                
Bezug
Konvergenzradius mit Vektor: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Di 08.05.2007
Autor: Canard_Sauvage

Perfekt, danke, das war genau das, was ich gesucht hab. Ich habe mich schon die ganze Zeit gewundert, wie ich diese Frage/Aufgabe verstehen soll, habe auch erst an "Alpha über n" gedacht, das dann aber erstmal wieder verworfen, weil wir das nie hatten (in der Vorlesung / Übung). :)

Was ich mich schon eine ganze Weile Frage - wenn jemand auf eine Frage antwortet, bedankt man sich dann hier im matheraum?

Bezug
                        
Bezug
Konvergenzradius mit Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Di 08.05.2007
Autor: felixf


> Perfekt, danke, das war genau das, was ich gesucht hab. Ich
> habe mich schon die ganze Zeit gewundert, wie ich diese
> Frage/Aufgabe verstehen soll, habe auch erst an "Alpha über
> n" gedacht, das dann aber erstmal wieder verworfen, weil
> wir das nie hatten (in der Vorlesung / Übung). :)

Hehe ok :) Meistens lernt man ja auch nur die Variante [mm] $\binom{n}{k}$ [/mm] kennen mit $n, k [mm] \in \IN$, [/mm] und nicht die Variante fuer beliebige reelle Zahlen. (Die ist mir uebrigens auch erst recht spaet im Studium mal begegnet, richtig damit zu tun hatte ich eigentlich nie... Aber zumindest weiss ich das es sie gibt und das man damit ne verallgemeinerte binomische Formel bekommt...)

> Was ich mich schon eine ganze Weile Frage - wenn jemand auf
> eine Frage antwortet, bedankt man sich dann hier im
> matheraum?

Das ist eine gute Frage... Manche tun das, andere wiederum nicht. Mir persoenlich ist es egal, ob sich jemand bedankt oder nicht, aber freuen tu ich mich trotzdem wenn sich jemand bei mir bedankt :)

(Ich seh grad, dass es in den Forenregeln etwas dazu gibt.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de