www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius v Potenzreihe
Konvergenzradius v Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius v Potenzreihe: Grenzwertbestimmung
Status: (Frage) beantwortet Status 
Datum: 14:03 So 24.10.2010
Autor: pppppp

Aufgabe
Bestimmen Sie den Konvergenzradius:

[mm]\summe_{n=1}^{unendlich} \bruch{n+2}{2^n}x^n[/mm]



Mein Versuch sieht soweit ganz gut aus, aber ich kann nicht die allerletzte Umformung ist zwar gefühlt richtig, weil die konstante vernachlässigbar wird, aber ich kann es nicht mathematisch begründen :-( Kann mir jamand einen Tipp geben?

Konvergenzbeweis per Wurzelkriterium:

[mm] \wurzel[n]{ | \bruch{n+2}{2^n}x^n | } = \bruch{x}{2} \wurzel[n]{1+\bruch{2}{n}} [/mm] für n->unendlich [mm] = \bruch{x}{2} [/mm]

weil der Bruch gegen 0 geht und Wurzel von 1 gleich 1.
Ist so eine Verschachtelung von Grenzwerten zulässig?

Viele Grüße Philipp



Konvergenzradius wäre dann |x|<2




        
Bezug
Konvergenzradius v Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 24.10.2010
Autor: schachuzipus

Hallo Philipp,


> Bestimmen Sie den Konvergenzradius:
>  
> [mm]\summe_{n=1}^{\infty} \bruch{n+2}{2^n}x^n[/mm]

Das unendlich Zeichen ist \infty : [mm]\infty[/mm]

>  
>
> Mein Versuch sieht soweit ganz gut aus, aber ich kann nicht
> die allerletzte Umformung ist zwar gefühlt richtig, weil
> die konstante vernachlässigbar wird, aber ich kann es
> nicht mathematisch begründen :-( Kann mir jamand einen
> Tipp geben?
>  
> Konvergenzbeweis per Wurzelkriterium:
>  
> [mm]\wurzel[n]{ | \bruch{n+2}{2^n}x^n | } = \bruch{x}{2} \wurzel[n]{1+\bruch{2}{n}}[/mm]

Wie kommst du auf den Wurzelausdruck?

Es ist doch [mm]\sqrt[n]{\left|\frac{n+2}{2^n}x^n\right|}=\frac{|x|}{2}\cdot{}\sqrt[n]{n+2}[/mm]


> für n->unendlich [mm]= \bruch{x}{2}[/mm] ([ok])

Beachte, dass da [mm]|x|[/mm] stehen muss!

>  
> weil der Bruch gegen 0 geht und Wurzel von 1 gleich 1.
>  Ist so eine Verschachtelung von Grenzwerten zulässig?

Das wäre es, aber der Bruch ist falsch, wieder umgerechnet steht da [mm]1+\frac{2}{n}=\frac{n+2}{n}[/mm]

Woher du das n im Nenner hast, ist mir schleierhaft.

>  
> Viele Grüße Philipp
>  
>
>
> Konvergenzradius wäre dann |x|<2

Naja, das ist unglücklich formuliert, der K.radius ist eine nicht-negative ZAHL (oder [mm]\infty[/mm])[mm][/mm] ,also besser: Konvergenzradius ist [mm]\rho=2[/mm]

Damit Konvergenz für [mm]|x|<\rho=2[/mm]

Nebenbei bemerkt gibt es doch für Potenzreihen das Kriterium von Cauchy-Hadamard, da musst du das x nicht mitschleifen ...


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de