www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzwert bestimmen
Konvergenzwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzwert bestimmen: Idee
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 09.02.2011
Autor: Karander

Aufgabe
Für welche x Konvergieren die Reihen und wogegen?

[mm]\summe_{k=1}^{ \infty} \bruch{sin(x)^n}{2+cos(x)} [/mm]

[mm]\summe_{k=1}^{ \infty} \bruch{log(x)^n}{n!} [/mm]


Bei der 2ten Reihe meine ich, dass sie nur für [mm] \bruch{1}{e} [/mm] konvergiert und dann gegen 0, wobei das hab ich mir nur überlegt, nicht ausgerechnet.

Die erste macht mir mehr Probleme. Wegen [mm]\bruch{a_{n+1}}{a_n}=sinx[/mm] würde ich sagen, dass diese Konvergiert für [mm] x \in \IR/2 \pi a [/mm] wobei [mm]a \in \IZ [/mm]. Hab aber keine Ahnung wie ich dem Konvergenzwert ausrechnen soll. Ich denke es wird auch Null sein, da es bei paar einfachen Beispielen rauskommt [mm] \pi , \bruch{3 \pi}{2} [/mm] aber wie kann ich das allgemein hierfür ausrechnen?

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mi 09.02.2011
Autor: MaTEEler


> Für welche x Konvergieren die Reihen und wogegen?
>  
> [mm]\summe_{k=1}^{ \infty} \bruch{sin(x)^n}{2+cos(x)} [/mm]
>  
> [mm]\summe_{k=1}^{ \infty} \bruch{log(x)^n}{n!} [/mm]

Ich gehe davon aus, dass die beiden Summen als Summenindex n haben, oder?! Beginnen sie denn wirklich bei n=1 oder evtl. bei n=0?

> Bei der 2ten Reihe meine ich, dass sie nur für
> [mm]\bruch{1}{e} [/mm] konvergiert und dann gegen 0, wobei das hab
> ich mir nur überlegt, nicht ausgerechnet.

Nein, das glaube ich nicht. Diese Reihe lässt sich umschreiben in die Exponentialreihe, sprich in die Reihendarstellung der e-Funktion. Gegebenenfalls müsste im Falle des Startwerts n=1 der Summand für n=0 noch ergänzt werden, um die Exponentialreihe, die von 0 bis [mm] \infty [/mm] läuft, zu erhalten. Nach umschreiben in die Exp.-reihe lässt sich die Konvergenzfrage leicht, klären, denn die Exponentialreihe konvergiert bekanntlich gegen den entsprechenden Wert der Exponentialfunktion.

> Die erste macht mir mehr Probleme. Wegen
> [mm]\bruch{a_{n+1}}{a_n}=sinx[/mm] würde ich sagen, dass diese
> Konvergiert für [mm]x \in \IR/2 \pi a[/mm] wobei [mm]a \in \IZ [/mm]. Hab
> aber keine Ahnung wie ich dem Konvergenzwert ausrechnen
> soll. Ich denke es wird auch Null sein, da es bei paar
> einfachen Beispielen rauskommt [mm]\pi , \bruch{3 \pi}{2}[/mm] aber
> wie kann ich das allgemein hierfür ausrechnen?

Die Idee mit dem Konvergenzkriterium ist schon mal nicht schlecht. Allerdings hast du dich dann etwas vertan oder nicht genau das Kriterium beachtet. Der Quotient ist richtig berechnet, aber das Kriterium besagt, dass Konvergenz nur dann vorliegt, wenn der Quotient [mm] \bruch{a_{n+1}}{a_n}=sinx \le [/mm] q < 1 ist, also es reicht nicht zu zeigen, dass [mm] \bruch{a_{n+1}}{a_n}\le1 [/mm] ist.
Somit liegt die Konvergenz für alle x vor, für die gilt [mm] sinx\le [/mm] q < 1. Das sind alle [mm] x\not=\bruch{\pi}{2}*(2a+1) [/mm] mit [mm] a\varepsilon\IZ. [/mm] Man beachte, dass das Quotientenkriterium außerdem den Betrag des Bruches betrachtet, also müssen auch die Werte ausgeschlossen werden, für die gilt sin(x)=-1.

Die x-Werte, für die sin(x)=0 gilt müssen außerdem ausgenommen werden, da das Quotientenkriterium nur für [mm] a_{n}\not=0\forall [/mm] n definiert ist. Aber dieses Sonderfall sollte leicht zu berechnen sein, schließlich sind dann alle Summanden =0.

Wie man mit elementaren Mitteln auf den Wert, gegen den die Reihe konvergiert, kommt, weiß ich allerdings momentan selber noch nicht, sorry. Aber vielleicht fällt mir (oder jemand anders) ja noch was dazu ein...


MfG,
MaTEEler

Bezug
                
Bezug
Konvergenzwert bestimmen: Konvergenzwert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mi 09.02.2011
Autor: MaTEEler

Also mir ist jetzt doch noch eine Möglichkeit eingefallen, den Wert der Reihe zu bestimmen, und zwar mithilfe der geometrischen Reihe.
Ich rede natürlich von der Reihe mit dem Sinus.

Aus deiner Summe kannst du einen Teil rausziehen, also praktisch ausklammern, da er unabhängig ist von n. Der Rest, der dann übrig bleibt in der Summe, bildet eine geometrische Reihe á la [mm] c*\summe_{n=0}^{\infty} a^{n}. [/mm] Falls die Summe auch bei n=1 beginnt, müsste sie entsprechend um den nullten Summanden ergänzt werden.
Der Grenzwert der geometrischen Reihe sollte bekannt sein.

MfG,
MaTEEler

Bezug
                
Bezug
Konvergenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Mi 09.02.2011
Autor: Karander

Ja, das mit sinus stimmt, hab es wohl gedanklich mit cos vertauscht und mit der geometrischen Reihe ist es dann wirklich banal :). Was wiederum die andere Reihe anbelangt. Würde es ok sein wenn ich sage, dass für [mm]e^x[/mm] es genau die exponetzialreihe ist und deswegen kovergiert sie für [mm]e^x[/mm] gegen [mm]e^x[/mm] oder müsste ich es irgendwie länger "gestalten"?

Bezug
                        
Bezug
Konvergenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mi 09.02.2011
Autor: MathePower

Hallo Karander,

> Ja, das mit sinus stimmt, hab es wohl gedanklich mit cos
> vertauscht und mit der geometrischen Reihe ist es dann
> wirklich banal :). Was wiederum die andere Reihe anbelangt.
> Würde es ok sein wenn ich sage, dass für [mm]e^x[/mm] es genau die
> exponetzialreihe ist und deswegen kovergiert sie für [mm]e^x[/mm]
> gegen [mm]e^x[/mm] oder müsste ich es irgendwie länger
> "gestalten"?


Das müsstest Du irgendwie länger gestalten.

Es ist richtig, daß die zweite Reihe, die Gestalt einer Exponentialreihe hat.
Der Exponent der Exponentialreihe stimmt mit x jedoch nicht.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de