www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Konvexe Funktion
Konvexe Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexe Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 06.11.2012
Autor: Hellfrog

Aufgabe
Seien $I [mm] \subset \IR$ [/mm] ein Intervall und $f : I [mm] \to \IR$ [/mm] eine konvexe Funktion. Zeigen Sie die folgenden
Aussagen:

(a) Für alle [mm] $x_{1}, [/mm] ... , [mm] x_{n} \in [/mm] I$ und alle [mm] $\alpha_{1}, [/mm] ... , [mm] \alpha_{n} \in [/mm] [0, 1]$ mit [mm] $\summe_{k=1}^{n} \alpha_{k} [/mm] = 1$ gilt:
[mm] $f(\alpha_{1}x_{1} [/mm] + ... + [mm] \alpha_{n}x_{n}) \le \alpha_{1}f(x_{1}) [/mm] + ... +  [mm] \alpha_{n}f(x_{n}). [/mm] (1)

(b)  Ist f strikt konvex und sind [mm] $\alpha_{1}, [/mm] ... , [mm] \alpha_{n} [/mm] > 0$ mit [mm] $\summe_{k=1}^{n} \alpha_{k} [/mm] = 1$, so gilt in (1) genau
dann das Gleichheitszeichen, wenn [mm] x_{1}=x_{2}=...=x_{n}. [/mm]

hallo

die definition einer konvexen funktion ist ja:
$f(tx + (1-t)y) [mm] \le [/mm] tf(x) + (1-t)f(y)$ mit $x,y [mm] \in [/mm] I, t [mm] \in [/mm] (0,1)$

ich weiß jetzt nicht so richtig wie ich das bei a) anweden kann, der einzige unterschied zur definition von konvex ist das die summe der [mm] \alpha_{i} [/mm] gleich 1 ist und jedes [mm] \alpha [/mm] aus [0,1] sein darf.

meine überlegung war jetzt, dass ich es "induktiv" versuche. also [mm] \alpha_{1}=1 [/mm] und somit alle anderen [mm] \alpha [/mm] = 0, danach [mm] \alpha_{1}=\alpha_{2}=\bruch{1}{2} [/mm] usw
damit zeig ich dann aber auch nur was die definition von konvex schon sagt.


zur b) hab ich mir folgendes überlegt:
ich nehme an, dass die behauptung für ein x aus I nicht gilt, also das gleichheit gilt auch mit [mm] x_{1}=x_{2}=...=x_{n}\not=x_{n+1}. [/mm]
die summe der [mm] \alpha_{i} [/mm] muss ich dann natürlich bis n+1 laufen lassen. da die koeffizienten der funktionenwerte ja alle fest sind, sollte man die behauptung direkt sehen können.
aber dann hab ich garnicht benutzt das die funktion strikt konvex ist (definition oben mit < statt mit [mm] \le), [/mm] was mich etwas stutzig macht, ob die lösung so korrekt ist.


vielen dank im voraus

        
Bezug
Konvexe Funktion: a)
Status: (Antwort) fertig Status 
Datum: 11:18 Mi 07.11.2012
Autor: tobit09

Hallo Hellfrog,


> die definition einer konvexen funktion ist ja:
>  [mm]f(tx + (1-t)y) \le tf(x) + (1-t)f(y)[/mm] mit [mm]x,y \in I, t \in (0,1)[/mm]

Genau.
Insbesondere [mm] $tx+(1-t)y\in [/mm] I$.
Für die Aufgabe a) ist die Überlegung nützlich, dass die Ungleichung auch für t=0 und t=1 stimmt.


> meine überlegung war jetzt, dass ich es "induktiv"
> versuche. also [mm]\alpha_{1}=1[/mm] und somit alle anderen [mm]\alpha[/mm] =
> 0, danach [mm]\alpha_{1}=\alpha_{2}=\bruch{1}{2}[/mm] usw
>  damit zeig ich dann aber auch nur was die definition von
> konvex schon sagt.

Zeige per Induktion nach n: Für alle [mm] $n\in\IN$ [/mm] gilt: Für alle [mm] $x_1,\ldots,x_n\in [/mm] I$ und [mm] $\alpha_1,\ldots,\alpha_n\in[0,1]$ [/mm] mit [mm] $\sum_{k=1}^n\alpha_k=1$ [/mm] ist [mm] $\alpha_1x_1+\ldots+\alpha_nx_n\in [/mm] I$ und die Ungleichung gilt.

Für den Induktionsanfang n=0 ist nichts zu zeigen, da keine solchen [mm] $\alpha_1,\ldots,\alpha_n$ [/mm] mit [mm] $\sum_{k=1}^n\alpha_k=1$ [/mm] existieren.

Für den Induktionsschritt von n nach n+1 setze [mm] $t:=\sum_{k=1}^n\alpha_k=1-a_{n+1}$. [/mm]
Falls t=0 kannst du die Behauptung direkt überprüfen.
Sei nun [mm] $t\not=0$. [/mm]

Dann gilt:

     [mm] $\alpha_1f(x_1)+\ldots+\alpha_nf(x_n)+\alpha_{n+1}f(x_{n+1})=t*\left(\bruch{\alpha_1}{t}f(x_1)+\ldots+\bruch{\alpha_n}{t}f(x_n)\right)+(1-t)f(x_{n+1})$. [/mm]

Kommst du damit weiter?


Viele Grüße
Tobias

Bezug
        
Bezug
Konvexe Funktion: b)
Status: (Antwort) fertig Status 
Datum: 11:54 Mi 07.11.2012
Autor: tobit09


> zur b) hab ich mir folgendes überlegt:
>  ich nehme an, dass die behauptung für ein x aus I nicht
> gilt, also das gleichheit gilt auch mit
> [mm]x_{1}=x_{2}=...=x_{n}\not=x_{n+1}.[/mm]

Wenn die Behauptung für gewisse [mm] $x_1,\ldots,x_{n+1}$ [/mm] nicht gilt, warum sollte dann [mm] $x_1=x_2=\ldots=x_n\not=x_{n+1}$ [/mm] gelten?

> da die koeffizienten der funktionenwerte ja
> alle fest sind, sollte man die behauptung direkt sehen
> können.

Wie?

>  aber dann hab ich garnicht benutzt das die funktion strikt
> konvex ist (definition oben mit < statt mit [mm]\le),[/mm]

Und in der Definition von oben ist "für [mm] $x\not=y$" [/mm] zu ergänzen. Für $x=y$ gilt Gleichheit und nicht "$<$".


Es sind zwei Richtungen zu zeigen. Dass für [mm] $x_1=\ldots=x_n$ [/mm] Gleichheit in (1) gilt, kannst du direkt nachprüfen.

Für die andere Richtung führe wieder Induktion nach n. Behandle die Fälle n=0 und n=1 separat.

Um von [mm] $n\ge1$ [/mm] auf n+1 zu schließen arbeite mit t definiert wie in a). Am besten wartest du mit diesem Teil, bis du a) gelöst hast.

Bezug
                
Bezug
Konvexe Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 07.11.2012
Autor: Hellfrog

hallo

vielen dank für die hilfe, hat echt sehr geholfen (besonders beim induktionsschritt). werde es nachher mal ordentlich aufschreiben und falls es noch fragen gibt nochmal hier melden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de