www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Konvexität - Beweisführung
Konvexität - Beweisführung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexität - Beweisführung: Tipp / Lösung gesucht
Status: (Frage) beantwortet Status 
Datum: 22:02 Mo 20.04.2009
Autor: NixPeil

Aufgabe
Seien A [mm] \subseteq \IR^d [/mm] und B [mm] \subseteq \IR^d [/mm] konvexe Mengen und [mm] \alpha \in \IR. [/mm] Wir setzen:
A + B := {v + w | v [mm] \in [/mm] A, w [mm] \in [/mm] B} und [mm] \alpha [/mm] * A := { [mm] \alpha [/mm] v | v [mm] \in [/mm] A } Zeigen Sie:

(i) Sind A und B konvex, so auch A + B
(ii) Ist A konvex, so auch [mm] \alpha [/mm] * A
(iii) Ist A konvex und [mm] \alpha, \beta [/mm] > 0, dann gilt [mm] (\alpha [/mm] + [mm] \beta) [/mm] * A = [mm] \alpha [/mm] * A + [mm] \beta [/mm] * A
(iv) Zeigen Sie: (iii) ist falsch, falls A nicht als konvex vorausgesetzt wird.

Hi Leute,

folgendes Problem: Muss am Mittwoch meine Lösungen zu dieser Aufgabe abgeben, habe aber keinen Schimmer. (i) und (ii) ist klar. Bei (iii) blicke ich noch halbwegs durch; bei der (iv) jedoch weiß ich nicht mal wie ich anfangen soll.

Hat jemand von euch einen Tipp parat oder vielleicht sogar eine Lösung für die (iv). Bin voll am verzweifeln...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvexität - Beweisführung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:18 Di 21.04.2009
Autor: Marcel

Hallo,

> Seien A [mm]\subseteq \IR^d[/mm] und B [mm]\subseteq \IR^d[/mm] konvexe
> Mengen und [mm]\alpha \in \IR.[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Wir setzen:

>  A + B := $\{$v + w | v [mm]\in[/mm] A, w [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B$\}$ und [mm]\alpha[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

* A := $\{$

> [mm]\alpha[/mm] v | v [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A $\}$ Zeigen Sie:

>  
> (i) Sind A und B konvex, so auch A + B
>  (ii) Ist A konvex, so auch [mm]\alpha[/mm] * A
>  (iii) Ist A konvex und [mm]\alpha, \beta[/mm] > 0, dann gilt

> [mm](\alpha[/mm] + [mm]\beta)[/mm] * A = [mm]\alpha[/mm] * A + [mm]\beta[/mm] * A
>  (iv) Zeigen Sie: (iii) ist falsch, falls A nicht als
> konvex vorausgesetzt wird.
>  Hi Leute,
>  
> folgendes Problem: Muss am Mittwoch meine Lösungen zu
> dieser Aufgabe abgeben, habe aber keinen Schimmer. (i) und
> (ii) ist klar. Bei (iii) blicke ich noch halbwegs durch;
> bei der (iv) jedoch weiß ich nicht mal wie ich anfangen
> soll.
>  
> Hat jemand von euch einen Tipp parat oder vielleicht sogar
> eine Lösung für die (iv). Bin voll am verzweifeln...

dann ist ja nur noch (iv) unklar. Nimm' doch mal [mm] $A\,$ [/mm] als zweielementige Teilmenge des [mm] $\IR^d$ [/mm] und [mm] $\alpha=1$ [/mm] und [mm] $\beta=2\,.$ [/mm]

Also mal ein banales Beispiel für [mm] $d=1\,$ [/mm] (im [mm] $\IR^d$ [/mm] für $d [mm] \ge 2\,$ [/mm] kannst Du ansonsten einfach [mm] $A\,$ [/mm] so angeben, dass [mm] $A\,$ [/mm] aus zwei Vektoren der kanonischen Basis besteht):
[mm] $$A=\{e,\,\pi\}\,,$$ [/mm]
dann gilt
[mm] $$(1+2)*A=3*A=\{3e,\,3\pi\}\,,$$ [/mm]
aber
[mm] $$1*A+2*A=\{e,\,\pi\}+\{2e,\,2\pi\}=\{3e,\,e+2\pi,\,\pi+2e,\,3\pi\} \not=\{3e,\,3\pi\}\,.$$ [/mm]

Also im [mm] $\IR^2$ [/mm] kannst Du bspw. wieder [mm] $\alpha=1\,,$ $\beta=2\,,$ [/mm] und dann [mm] $A=\{(1,0)^T,\,(0,1)^T\}$ [/mm] nehmen.
Im [mm] $\IR^3$ [/mm] wieder [mm] $\alpha=1$ [/mm] und [mm] $\beta=2\,,$ [/mm] und dann [mm] $A=\{(1,0,0)^T,\,(0,1,0)^T\}$ [/mm] etc.

Gruß,
Marcel

Bezug
                
Bezug
Konvexität - Beweisführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Di 21.04.2009
Autor: NixPeil

Ok ... bin erleuchtet :-) Vielen Dank für deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de