www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Konvexivität
Konvexivität < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Sa 26.01.2008
Autor: matheja

Aufgabe
Hi.

Wollt nachfragen ob jemand drüber schauen könnte ob ich folgende Aufgaeb korrekt gelöst habe.

Aufagabe:

Beweisen Sie die Konvexitat der Funktion:

[mm] f(n)=\begin{cases} x^{2}, & \mbox{für } x \mbox{ <0} \\ x, & \mbox{für } \mbox{x>=0} \end{cases} [/mm]


Nach konvexivitätskriterium ergeben sich drei Fälle:

1. x und y <0
2.x<0 und y>=0
3.x und y>0

Konvexkriterium lautet

a. f(x) ist konvex <=> f´´(x)>=0
b.f(x) ist streng konvex <=> f´´(x)=0

Fall 1 :
1. [mm] f(x))x^{2}=> [/mm] f´´(x)=2 >0 => ist streng konvex für alle x

Fall 3:
3. f(x)=x => f´´(x)=0  => ist konvex für alle x

Fall 2:

2.ich hab die Funktion skizziert und Konvexivität.Kann ich das auch irgendwie anders mit der Def. zeigen so wie in 1. und 3?

Danke vorweg

matheja


        
Bezug
Konvexivität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Sa 26.01.2008
Autor: Somebody


> Hi.
>  
> Wollt nachfragen ob jemand drüber schauen könnte ob ich
> folgende Aufgaeb korrekt gelöst habe.
>
> Aufagabe:
>  
> Beweisen Sie die Konvexitat der Funktion:
>  
> [mm]f(n)=\begin{cases} x^{2}, & \mbox{für } x \mbox{ <0} \\ x, & \mbox{für } \mbox{x>=0} \end{cases}[/mm]
>  
>
> Nach konvexivitätskriterium ergeben sich drei Fälle:
>  
> 1. x und y <0
>  2.x<0 und y>=0
>  3.x und y>0

Diese Wahl der Namen $x,y$ ist, für allem für die Zwecke einer Detailargumentation im problematischen Fall 2, etwas unglücklich. Besser wäre [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] anstelle von $x$ und $y$.
  Für den Nachweis der Konvexität von $f(x)$ haben wir zu zeigen, dass für alle [mm] $x_1,x_2\in \IR$ [/mm] mit [mm] $x_1
Deine Fallunterscheidung ist in Ordnung und es ist sicher richtig, dass man in den Fällen [mm] $x_2\leq [/mm] 0$ und [mm] $0\leq x_1$ [/mm] das Konvexitätskriterium [mm] $f''(x)\geq [/mm] 0$ anwenden kann:

>  
> Konvexkriterium lautet
>  
> a. f(x) ist konvex <=> f´´(x)>=0
>  b.f(x) ist streng konvex <=> f´´(x)=0

>  
> Fall 1 :
>  1. [mm]f(x))x^{2}=>[/mm] f´´(x)=2 >0 => ist streng konvex für alle

> x
>  
> Fall 3:
>  3. f(x)=x => f´´(x)=0  => ist konvex für alle x

>  
> Fall 2:
>  
> 2.ich hab die Funktion skizziert und Konvexivität.Kann ich
> das auch irgendwie anders mit der Def. zeigen so wie in 1.
> und 3?

Im problematischen Fall [mm] $x_1<0 Um auch im Fall 2 formal zu zeigen, dass die Verbindungsstrecke von [mm] $(x_1|f(x_1))$ [/mm] und [mm] $(x_2|f(x_2))$ [/mm] oberhalb des Graph von $f$ liegt, müsste man also noch nachweisen, dass (wie ich oben behauptet habe), die Verbindungsstrecke von [mm] $(x_1|f(x_1))$ [/mm] und [mm] $(x_2|f(x_2)$ [/mm] oberhalb den Verbindungsstrecken von [mm] $(x_1|f(x_1))$ [/mm] und $(0|f(0))$ sowie von $(0|f(0))$ und [mm] $(x_2|f(x_2))$ [/mm] liegt.
Zu diesem Zweck könntest Du z.B. die drei Strecken je mittels einer Geradengleichung ausdrücken: $s: [mm] y=\frac{x_2-x_1^2}{x_2-x_1}(x-x_1)+x_1^2$, $s_1: y=(-x_1)x$ [/mm] und [mm] $s_2: [/mm] y=x$.

Mit diesem Ansatz müsstest Du zeigen können, dass für [mm] $x\in [x_1;0]$ [/mm] gilt, dass [mm] $s_1(x)\leq [/mm] s(x)$, und dass für [mm] $x\in [0;x_2]$ [/mm] gilt, dass [mm] $s_2(x)\leq [/mm] s(x)$.

Hat man dies gezeigt, dann folgt sogleich, dass für alle [mm] $x\in [x_1;x_2]$ [/mm] gilt [mm] $f(x)\leq [/mm] s(x)$, d.h. die Strecke $s(x)$ verläuft oberhalb des Graphen von $x$ (denn ist [mm] $x\in [x_1;0]$, [/mm] so schliesst man [mm] $f(x)\leq s_1(x)\leq [/mm] s(x)$, also [mm] $f(x)\leq [/mm] s(x)$; ist aber [mm] $x\in ]0;x_2]$, [/mm] so schliesst man [mm] $f(x)\leq s_2(x)\leq [/mm] s(x)$, also [mm] $f(x)\leq [/mm] s(x)$).

Aber dieses Vorgehen ist natürlich schon ein wenig mühsam (um es eimmal höflich auszudrücken).


Bezug
                
Bezug
Konvexivität: Danke!
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:12 Sa 26.01.2008
Autor: matheja

Aufgabe
Danke somebody!



Ich kann deine Gednaken zum 2. Fall verstehen, frag mich aber auch gleichzeitig ob es nicht noch einen kurzeren weg gibt.In einer Klausur (1.30 h) kann man sich ja mit so einer aufgabe nicht ewig herumschlagen.

Danke vorweg

matheja


Bezug
                        
Bezug
Konvexivität: Hat sich erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 So 27.01.2008
Autor: matheja

Danke hat sich erledigt

lg

matheja

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de