www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Koordinaten berechnen
Koordinaten berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Sa 14.05.2011
Autor: Pat_rick

Aufgabe
Ermitteln Sie die Koordinaten des Punktes T auf G für den Fall, dass der Abstand von T zum Koordinatenursprung minimal wird ( ohne Nachweis des Minimums ). Geben Sie den minimalen Abstand an.

G= [mm] ((x^2)-16)/(x-1)^3 [/mm]

Vielen Dank schon mal im Voraus ...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Koordinaten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Sa 14.05.2011
Autor: Blech

Guckst Du hier.

Bezug
        
Bezug
Koordinaten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Sa 14.05.2011
Autor: Pat_rick

Ja und jetzt? Lösungsansatz den ich Mitteilen kann gibt es nicht. Sämtliche Dinge die ich versucht habe um zur Lösung zu gelangen haben nicht zum richtigen Ergebnissen geführt.

Bezug
        
Bezug
Koordinaten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Sa 14.05.2011
Autor: fred97

Zu minimieren ist die Funktion

          [mm] f(x,y)=x^2+y^2, [/mm] wobei [mm] y=\bruch{x^2-16}{(x-1)^3} [/mm]

Bestimme also das Minimum von

        [mm] g(x)=x^2+(\bruch{x^2-16}{(x-1)^3})^2 [/mm]

Viel Spaß

FRED

Bezug
                
Bezug
Koordinaten berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Sa 14.05.2011
Autor: Pat_rick

Vielen Dank Fred, du schreibst dass man die Funktion minimieren muss, darunter kann ich mir nicht viel vorstellen. Kannst du das vielleicht etwas ausführlicher beschreiben, welche Überlegungen man da macht. Für mich sieht das nach Satz des P. aus, richtig? aber warum?

Bezug
                        
Bezug
Koordinaten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 14.05.2011
Autor: leduart

Hallo
ein Punkt (x1,y1) auf G hat nach Pythagoras von 0 die  Entfernung....
ausserdem kennst du y1(x1)
dann soll dieser Abstand ein Min haben.
Wie man mit Ableiten Minima bzw Extremwerte bestimmt solltest du wissen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de