www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Koordinaten eines Schnittpunkt
Koordinaten eines Schnittpunkt < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten eines Schnittpunkt: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:09 Do 07.07.2016
Autor: DieZwiebel

Aufgabe
Gegeben ist eine Funktion g mit y=2x - 5. Der Graph ist die Gerade G. Eine Gerade H verläuft parallel zu G und berührt die Parabel in einem Punkt Q. Berechnen Sie die Koordinaten von Q.

Parabel P: x² + 6x + 5

Hallo,

ich habe hier noch eine Problemaufgabe bei der ich einen Tipp bräuchte.

Die Parabel hat mit H einen gemeinsamen Punkt Q.
G ist parallel zu H, besitzt also die gleiche Steigung.

H: y= 2x + t

Soweit bin ich mir schon sicher.

Weil es jetzt heißt Schnittpunkt, würde ich H und P gleichsetzen.

2x + t = x² + 6x + 5
t = x² + 4x + 5

Aber ab hier setzt es dann aus, weil ich keine Idee hab, wie ich weiter verfahren soll.

Wäre nett wenn mir jemand einen Tipp geben könnte. :-)

        
Bezug
Koordinaten eines Schnittpunkt: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 13:13 Do 07.07.2016
Autor: Roadrunner

Hallo DieZwiebel!



Stelle auch hier um in die Normalform und wende die MBp/q-Formel an:

[mm] $x^2+4x+5-t [/mm] \ = \ 0$

Damit sich die Gerade H und die Parabel "berühren" (d.h. nicht zweimal schneiden), darf es für diese Gleichung nur eine Lösung geben.
Dies erhält man genau dann, wenn der Ausdruck unter der Wurzel gleich Null wird.


Gruß vom
Roadrunner

Bezug
                
Bezug
Koordinaten eines Schnittpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 07.07.2016
Autor: DieZwiebel

Ich steige dennoch nicht ganz dahinter.

[mm] \bruch{-4}{2} \pm \wurzel{(\bruch{4}{2})^2} [/mm] - 5

Wie setz ich das richtig ein ?

Bezug
                        
Bezug
Koordinaten eines Schnittpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Do 07.07.2016
Autor: Steffi21

Hallo, aus der Gleichung

[mm] t=x^2+4x+5 [/mm] folgt

[mm] 0=x^2+4x+5-t [/mm]

jetzt hast Du p=4 und q=5-t

[mm] x_1_2=-2\pm\wurzel{4-(5-t)} [/mm]

jetzt ist zu lösen

4-(5-t)=0

t= ....

Steffi

Bezug
                                
Bezug
Koordinaten eines Schnittpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 07.07.2016
Autor: DieZwiebel

4-(5-t)=0
4-5+t=0
-1=-t
t=1

_____________

x² + 6x +5 = 2x + 1
x² + 4x + 4 = 0

[mm] \bruch{-4 \pm\wurzel{4^2 - 4 * 1 * 4}}{2 * 1} [/mm]

x1/2 = -2

eingesetzt in eine Funktion

y= 2 * (-2) + 1
y= -3

bzw.

y= [mm] (-2)^2 [/mm] + 6* (-2) +5
y= 4 - 12 + 9
y= -3

Dann müsste Punkt Q (-2/-3) sein oder ?

lg Zwiebel

Bezug
                                        
Bezug
Koordinaten eines Schnittpunkt: korrekt
Status: (Antwort) fertig Status 
Datum: 15:15 Do 07.07.2016
Autor: Roadrunner

Hallo Zwiebel!


[daumenhoch] Das habe ich auch erhalten.


Gruß vom
Roadrunner

Bezug
                                                
Bezug
Koordinaten eines Schnittpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Do 07.07.2016
Autor: DieZwiebel

Dankeschön euch !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de