www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Koordinaten und Maße
Koordinaten und Maße < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten und Maße: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:05 Do 10.12.2015
Autor: algieba

Aufgabe
Sei Q konvexes Gebiet in der Ebene. Betrachte den Fluss [mm] $\Phi^t$ [/mm] auf $Q [mm] \times S^1$, [/mm] der eine freie Bewegung des eines Partikels auf dem Gebiet Q mit elastischen Reflektionen am Rand von Q (Einfallswinkel = Ausfallswinkel) darstellt.
Dieser Fluss hat eine Karte $T: M [mm] \rightarrow [/mm] M$ wobei $M = [mm] \partial [/mm] Q [mm] \times [/mm] [0, [mm] \pi]$. [/mm] Der Raum M ist also die Menge der Einheitstangenten am Rand von Q.

Es können nun Koordinaten $(s, [mm] \varphi)$ [/mm] eingeführt werden, wobei s der Bogenlängenparameter modulo p (der Umfang von [mm] $\partial [/mm] Q$) ist, und [mm] $\varphi \in [0,\pi]$ [/mm] ist der Winkel den der Einheitsgeschwindigkeitsvektor mit der Tangente am Rand bildet.

Die Karte T erhält das Maß [mm] $\mu [/mm] = [mm] \sin\varphi dsd\varphi$. [/mm] Das Maß erhält man von [mm] $\nu$ [/mm] (Liouville-Maß?) durch das innere Produkt mit dem Geschwindigkeitsvektorfeld des Flusses [mm] $\Phi^t$. [/mm] Daraus folgt:

[mm] $\int_M \tau [/mm] (x) [mm] d\mu [/mm] (x) = [mm] \nu(Q\times S^1) [/mm] = [mm] \text{Area}(Q)2\pi$ [/mm]

wobei [mm] $\tau [/mm] (x)$ für [mm] $x\in [/mm] M$ ist der die Zeit bis zur nächsten Kollision.

Hallo

Ich hänge gerade an einigen oben gestellten Formulierungen:

Frage 1:
Wie findet man diese Koordinaten. Was genau bedeutet der hier der Bogenlängenparamter?

Frage 2:
Da ich bei Maßen gar nicht fit bin weiß ich nicht was ich tun muss um zu zeigen dass das Maß [mm] $\mu$ [/mm] erhalten bleibt, und mir ist auch nicht klar wie man es erhält. Außerdem verstehe ich die Folgerung nicht.

Könnt ihr mir da Tipps geben?

Vielen Dank


        
Bezug
Koordinaten und Maße: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 10.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de