www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Koordinatenform
Koordinatenform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenform: Beispiel 1
Status: (Frage) beantwortet Status 
Datum: 15:21 Di 08.06.2010
Autor: Laura28

Aufgabe
Bestimme für die Ebene [mm] E:\vec{x}=\vektor{1 \\ 1 \\ 1}+r\vektor{2 \\ 2 \\-1}+s\vektor{2 \\ 1 \\ 2} [/mm] eine Gleichung in Normalenform.
Überprüfe, ob der Punkt P(4/3/-2) auf der Ebene E liegt und bestimme den Schnittpunkt S der Ebene E mit der x3-Achse

Dann muss ich das ganze ja erstmal in die Normalenform umwandeln:

[mm] E:\vmat{ x-1 & 2 & 2 \\ y-1 & 2 & 1 \\ z-1 & -1 & 2} [/mm]

dann verstehe ich ja die ersten paar umformungen noch : 4(x-1)+2(y-1)-2(z-1) aber in den aufzeichnungen einer Freundin gehts jetzt weiter mit: -4(z-1)+1(x-1)-4(y-1)

beim ersten teil der Normalenform werden ja die Zahlen vor den klammer durch addieren der Zahlen ohne x bestimmt aber im zweiten Teil? Wie bestimme ich da die Zahlen vor der Klammer also -4, 1 und -4?

vielen Dank schonmal

        
Bezug
Koordinatenform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Di 08.06.2010
Autor: statler

Hi!

> Bestimme für die Ebene [mm]E:\vec{x}=\vektor{1 \\ 1 \\ 1}+r\vektor{2 \\ 2 \\-1}+s\vektor{2 \\ 1 \\ 2}[/mm]
> eine Gleichung in Normalenform.
>  Überprüfe, ob der Punkt P(4/3/-2) auf der Ebene E liegt
> und bestimme den Schnittpunkt S der Ebene E mit der
> x3-Achse
>  Dann muss ich das ganze ja erstmal in die Normalenform
> umwandeln:
>  
> [mm]E:\vmat{ x-1 & 2 & 2 \\ y-1 & 2 & 1 \\ z-1 & -1 & 2}[/mm]
>  
> dann verstehe ich ja die ersten paar umformungen noch :
> 4(x-1)+2(y-1)-2(z-1) aber in den aufzeichnungen einer

Das müßte wohl 4(x-1)-2(y-1)+2(z-1) heißen.

> Freundin gehts jetzt weiter mit: -4(z-1)+1(x-1)-4(y-1)
>  
> beim ersten teil der Normalenform werden ja die Zahlen vor
> den klammer durch addieren der Zahlen ohne x bestimmt aber
> im zweiten Teil? Wie bestimme ich da die Zahlen vor der
> Klammer also -4, 1 und -4?

Deine Agumentation verstehe ich nicht, du rechnest eine 3x3-Determinante aus, was nicht unbedingt zum Schulstoff gehört.

Besser zugänglich ist vielleicht der Weg über die Koordinatenform, also
x = 1 + 2r + 2s usw.
und dann die Parameter r und s eliminieren.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de