www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Koordinatengleichung
Koordinatengleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung: --> Parametergleichung
Status: (Frage) beantwortet Status 
Datum: 19:48 So 08.01.2006
Autor: MIB

Hallo,

ich weiß leider nicht wie man darauf kommt, kann mir bitte jm. helfen?

[mm] E:2_x_1 [/mm] - [mm] 3_x_2 [/mm] + [mm] 3_x_3 [/mm] = 6

A(0/0/2)
B(3/0/0)
C(0/-2/0)

Wie man darauf kommt ist mir klar, muss man oben einsetzen und dann muss immer, bzw. in diesem Beispiel 6 rauskommen.

Aber wie kommt man auf:

E: [mm] \overrightarrow{x} [/mm] =  [mm] \vektor{0 \\ 0 \\ 2} [/mm] +  [mm] \lambda \vektor{3 \\ 0 \\ -2} [/mm] +  [mm] \mu \vektor{0 \\ -2 \\ -2} [/mm]


Warum bleibt der erste Punkt, also A, unverändert und die Anderen nicht?

DANKE

        
Bezug
Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 So 08.01.2006
Autor: Zwerglein

Hi, MIB,

für die Parameterform einer Ebene brauchst Du
- einen Aufpunkt und
- zwei Richtungsvektoren.

Wenn Du nun - wie hier - drei Punkte gegeben hast,
nimmst Du einen davon
(welcher ist völlig beliebig! Du kannst statt A auch B oder C nehmen)
als Aufpunkt
und bildest dann zwei Vektoren, die zwischen jeweils zwei dieser Punkte liegen,
z.B.  [mm] \overrightarrow{AB} [/mm] und  [mm] \overrightarrow{AC}. [/mm]
Diese Vektoren sind dann die Richtungsvektoren.

Zusatz: Dass man die Vektoren zwischen zwei Punkten mit Hilfe der Faustregel
"Spitze minus Fuß"
bestimmt, ist Dir bekannt?

mfG!
Zwerglein

Bezug
                
Bezug
Koordinatengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 So 08.01.2006
Autor: MIB

Erstmal Danke


Ich kenne diese Faustregel leider nicht. Kannst du das mal aufschlüsseln?

DANKE

Bezug
                        
Bezug
Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 08.01.2006
Autor: Zwerglein

Hi, MIB,

also am besten ein Beispiel:

Du hast die Punkte A(2; 1; -3) und B(3; -4; 2).

Du möchtest den Vektor [mm] \overrightarrow{AB} [/mm] bestimmen.

Dann must Du von den Koordinaten des Punktes B (die Spitze des Vektors ist bei B!) die Koordinaten von A abziehen (bei A liegt der Fuß des Vektors!):

[mm] \overrightarrow{AB} [/mm] = [mm] \vektor{3 \\ -4 \\ 2} [/mm] - [mm] \vektor{2 \\ 1 \\ -3} [/mm] = [mm] \vektor{3 - 2 \\ -4 - 1 \\ 2 - (-3)} [/mm] = [mm] \vektor{1 \\ -5 \\ 5} [/mm]

Alles klar?

mfG!
Zwerglein

Bezug
                                
Bezug
Koordinatengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 So 08.01.2006
Autor: MIB

Alles klar, jetzt weiß ich was du meinst?

DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de