www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Koordinatengleichung
Koordinatengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung: Hilfe bei der Lösung
Status: (Frage) beantwortet Status 
Datum: 14:58 Sa 01.05.2010
Autor: gabi.meire

Hallo ihr Lieben,

ich verstehe die folgende Aufgabe überhaupt nicht, d.h. ich weiß nciht, wie ich rechnen bzw. vorgehen soll. Es wäre also super lieb, wenn mir jemand einen detaillierten Lösungsweg (am besten mit Erklärungen) aufschreiben könnte. Ich wäre euch super dankbar, da ich hier schon ziemlich lange rumtüftel, aber ncihts brauchbares dabei herauskommt.

Hier die Aufgabe:

Die Punkte A,B und C legen eine Ebene E fest. Bestimmen Sie eine Koordinatengleichung dieser Ebene E.

A (0/2/-1)
B (6/-5/0)
C (1/0/1)

Ich habe nun als erstes die Punkte in die Form von ax1+bx2+cx3=d eingesetzt. Aber was soll ich dann tun? Wenn ich versuche das irgendwie aufzulösen bleibt immer eine Variabel übrig....

        
Bezug
Koordinatengleichung: erst Parameterform
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 01.05.2010
Autor: Loddar

Hallo Gabi!


Bestimme zunächst eine Parametergleichung der Ebene und ermittle dann aus den beiden Richtungsvektoren einen Normalenvektor der Ebene.


Gruß
Loddar


Bezug
                
Bezug
Koordinatengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 01.05.2010
Autor: gabi.meire

sorry, auch wenn sich das jetzt mega doof anhört, aber wie errechnet man den eine parameterform?

Bezug
                        
Bezug
Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Sa 01.05.2010
Autor: schachuzipus

Hallo,

> sorry, auch wenn sich das jetzt mega doof anhört, aber wie
> errechnet man den eine parameterform?

Habt ihr dieses Thema nicht behandelt??

Ein bisschen mehr Eigeninitiative täte dir ganz gut!

Nimm dir einen der 3 Punkte als Aufpunkt oder Stützvektor, sagen wir $A$ und bilde die beiden Differenzvektoren $B-A$ und $C-A$ als Richtungsvektoren.

Dann hat die Ebene die Form [mm] $E:\vec{x}=A+r\cdot{}(B-A)+s\cdot{}(C-A)$ [/mm] mit [mm] $r,s\in\IR$ [/mm] (und $A, B-A, C-A$ als Vektoren aufgefasst)

Gruß

schachuzipus


Bezug
                
Bezug
Koordinatengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Sa 01.05.2010
Autor: gabi.meire

ich verstehe noch nicht, wie man dann von der parameterform auf die koordinatengleichung kommen soll. Das ist mir ercht ein Rätsel.

Bezug
                        
Bezug
Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Sa 01.05.2010
Autor: schachuzipus

Hallo nochmal,

> ich verstehe noch nicht, wie man dann von der parameterform
> auf die koordinatengleichung kommen soll. Das ist mir ercht
> ein Rätsel.

Mann, Mann.

Mathebuch? Google?

Echt!

Schreibe hier mal die konkrete Parameterform der Ebene auf.

Und die allg. Form der Koordinatengl. einer Ebene.

Wie hängen da die Koeffizienten mit dem Normalenvektor zusammen?

Den benötigten Normalenvektor (der ja senkrecht auf der Ebene steht), bekommst du folglich über das Kreuzprodukt der beiden Richtungsvektoren.

Dann bestimme einen bel. Punkt in der Ebene (vergib einfach irgendwelche Parameter r,s)

Jetz bist du aber mal dran, was zu schreiben ...

Das ist echt sehr sehr mager.

Wenigstens zu den Begrifflichkeiten könntest du dich schlau machen.

Mathebuch, Internet ...

Gruß

schachuzipus


Bezug
                                
Bezug
Koordinatengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 01.05.2010
Autor: gabi.meire

als parameterform habe ich heraus (0/2/-1)+r*(6/-7/1)+s*(1/-2/2)

die allg. Form der Koordinatengleichung ist doch ax1+bx2+cx3=d  , oder?

das problem warum ich das nicht verstehe ist, dass wir das in der schule immer anders gemacht haben, soweit ich mich erinnere. da haben wir dann einfach die gegebenen punkte a, b und c sofort in die allg. koordinatenform eingesetzt und dann irgenwie weitergemacht. die frage ist jetzt nur wie, da das in keinem meiner hier vor mir liegenden mathebücher zu sehen ist. es steht dort nur das ergebnis und ich weiß nicht, wie man darauf gekommen ist und ich würde mich echt freuen, wenn mir jemand einfach einmal einen beispielhaften lösungsweg aufschreiben könnte. es muss ja nicht mit den zahlen sein, die ich am anfang gebenen habe, es können ja auch andere sein. damit ihr nihct denkt, ich wollte mir von euch jetzt einfach nur meine hausaufgaben machen lassen. ich will es ja verstehen... aber dieses ganze fachjargon... damit komme ich nciht klar.

außerdem bin ich nicht faul (so wie es hier vlt vermutet wird) ich habe einfach nur das letzte halbe jahr in der schule gefehlt und muss jetzt echt richtig viel nachholen (nicht nur in mathe) und stehe daher unter einem enormen zeitdruck, weshalb ich mich vlt nicht mit allen aufgaben so genau beschäftigen kann.

bitte helft mir! es ist echt wichtig,

vielen lieben dank und viele grüße

Bezug
                                        
Bezug
Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Sa 01.05.2010
Autor: M.Rex

Hallo

> als parameterform habe ich heraus
> (0/2/-1)+r*(6/-7/1)+s*(1/-2/2)

Das sieht gut aus. Du kannst jetzt anhand dieser Parameterform die Normalenform von E bestimmen, wenn du diese dann "ausmultiplizierst", bekommst du die Koordinatenform.

>  
> die allg. Form der Koordinatengleichung ist doch
> ax1+bx2+cx3=d  , oder?

Yep.

>  
> das problem warum ich das nicht verstehe ist, dass wir das
> in der schule immer anders gemacht haben, soweit ich mich
> erinnere. da haben wir dann einfach die gegebenen punkte a,
> b und c sofort in die allg. koordinatenform eingesetzt und
> dann irgenwie weitergemacht. die frage ist jetzt nur wie,

Ich vermute mit dem MBGauß-Algorithmus, hier brauchst du aber noch einen Parameter, da du Drei Gleichungen aber 4 Variablen hast.

>  
> außerdem bin ich nicht faul (so wie es hier vlt vermutet
> wird) ich habe einfach nur das letzte halbe jahr in der
> schule gefehlt und muss jetzt echt richtig viel nachholen
> (nicht nur in mathe) und stehe daher unter einem enormen
> zeitdruck, weshalb ich mich vlt nicht mit allen aufgaben so
> genau beschäftigen kann.

Darum geht es ja gar nicht. Es ging darum, dass du auf die angegebenen Wege bisher sehr wenig eingegangen bist.

>  
> bitte helft mir! es ist echt wichtig,
>  
> vielen lieben dank und viele grüße

Marius

Bezug
                                                
Bezug
Koordinatengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Sa 01.05.2010
Autor: gabi.meire

vielen dank erst einmal.
also ich habe das jetzt soweit ausmultipliziert (schreibe es hier aber jetzt aus zeitgründen mal nicht ihn, ich hoffe, das ist ok)
woher nehme ich denn jetzt den 4 parameter? und wie setze ich es ein?

Bezug
                                                        
Bezug
Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Sa 01.05.2010
Autor: M.Rex

Hallo

Du hast doch:

E:ax+by+cz=d

Und drei Punkte, nämlich:

[mm] \red{A(0/2/-1)} [/mm]
[mm] \green{B(6/-5/0)} [/mm]
[mm] \blue{C(1/0/1)} [/mm]

Diese drei Punkte eingesetzt, ergibt folgedes GLS:

[mm] \vmat{\red{0}*a+\red{2}*b+\red{(-1)}*c=d\\\green{6}*a+\green{(-5)}*b+\green{0}*c=d\\\blue{1}*a+\blue{0}*b+\blue{1}*c=d} [/mm]
[mm] \gdw\vmat{2b-c=d\\6-5b=d\\a+c=d} [/mm]

Setze jetzt mal [mm] d=\lambda, [/mm] also ein Parameter.

[mm] \gdw\vmat{2b-c=\lambda\\6-5b=\lambda\\a+c=\lambda} [/mm]

Dieses LGS löse jetzt mal per Gauss-Algorithmus (oder einem anderen Verfahren) nach a,b und c.

Diese sollten jetzt noch von [mm] \lambda [/mm] abhängig sein, so dass du am Ende noch einen beliebigen Wert für [mm] \lambda [/mm] setzen kannst, um die Ebene zu bestimmen.

Die Koordinatenform einer Ebene ist ja nicht eindeutig, wenn z.B. E:3x-6y+8z=2 eine Ebene Beschreibt, ist F:6x-12y+16z=4 dieselbe Ebene, denn 3*2=6, (-6)*2=-12, 8*2=16 und 2*2=4

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de