www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Koordinatengleichung und Ebene
Koordinatengleichung und Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung und Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Mo 26.06.2006
Autor: mathe-berti

Aufgabe
1.)
Die Punkte A,B,C legen eine Ebene E fest. Bestimmen sie eine Koordinatengleichung dieser Ebene E.

A(0/2/-1) B(6/-5/0) C(1/0/1)


2.)
Untersuchen Sie, ob die Punkte A,B,C und D in einer gemeinsamen Ebene liegen.

A(0/1/-1) B(2/3/5) C(-1/3/-1) D(2/2/2)

Ich komme einfach nicht auf die Lösung, obwohl ich schon länger grübel.
Bitte helft mir.

        
Bezug
Koordinatengleichung und Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 26.06.2006
Autor: jerry

hallo berti,

eine ebene kann durch verschiedene formen charakterisiert werden. eine davon ist die koordinatengleichung.

die einfachste form eine ebene darzustellen (bei gegebenen drei punkten) ist aber zunächst mal die parameterform.
dazu benötigt man einen ortsvektor (also einen punkt) und zwei vektoren mit denen die ebene aufgespannt wird. aber ich denke dass kriegst du hin.
also haben wir zunächst die paramterform:
[mm] \vec{x}= \vektor{0 \\ 2 \\ -1}+r\cdot \vektor{6 \\ -7 \\ 1}+s\cdot \vektor{1 \\ 2 \\ -2} [/mm]
um nun eine koordinatenform zu erhalten, gibt es prinzipiell zwei wege:
der erste ist das kreuzprodukt und der zweite ist das Lineare Gleichungssystem stur lösen.
da wir in der schule das kreuzprodukt nicht benutzen durften, denke ich mal dass der zweite der richtige für dich ist.
du erstellst nun aus jeder zeile deiner parameterform eine gleichung:
[mm] x=0+r\cdot6+s\cdot1 [/mm]
[mm] y=2+r\cdot(-7)+s\cdot2 [/mm]
[mm] z=-1+r\cdot1+s\cdot(-2) [/mm]
hier musst du nun so umformen, dass die variablen r und s verschwinden.
letztendlich hast du dann eine koordinatengleichung.
versuch dich einfach mal dran.

bei der zweiten aufgabe ist danach gefragt ob 4 punkte auf einer ebene liegen. die vorgehensweise hierfür ist erst einmal eine ebene mit drei der vier punkte aufzustellen. (wie bei aufgabe1) und dann den vierten punkt in die ebenengleichung einzusetzen.
wird die gleichung vom vierten punkt erfüllt so liegt er auf der ebene und somit alle 4 in einer ebene, wenn nicht, dann liegen die punkte nicht in einer ebene.

gruß benjamin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de