www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Korrekturfaktorberechnung
Korrekturfaktorberechnung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrekturfaktorberechnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:58 Do 20.12.2012
Autor: metzelmax

Aufgabe
[mm] \bruch{Q-1}{Q+1}=\bruch{f}{ln(2)}\*cosh^{-1}\*(\bruch{exp^{\bruch{ln(2)}{f}}}{2}) [/mm]

Finden eines Algorithmus zur Bestimmung von f.

Hallo

Ich plage mich gerade mit der Formel hier ab. Diese dient dazu einen Korrekturfaktor (f) für die sogenannte []Van der Pauw Methode zu berechnen. Benötigt wird dieser Faktor später um Messwerte, welche bei einer Leitfähigkeitsanalyse aufgenommen wurden, zu korrigieren.

Leider ist es nicht möglich diese Formel nach dem Korrekturfaktor f analytisch umzustellen. In allen berichten liest man davon das dies mittels numerischer Verfahren machbar sei. Da ich aber ne Numerik-Niete bin hoffe ich das mir hier vielleicht jemand nen Hinweis geben kann wie ich diese Nuss knacken kann.

Die Werte für Q besitze ich aber das f kann bisher nur mein Taschenrechner nach über ner Minute Rechenzeit ausspucken (Voyage 200 solver). Würde die Berechnung gern automatisieren um den Faktor später mit Excel oder mittels eines Visual Basic Programms berechnen zu lassen.
Falls jemand eine Idee hat nur her damit. Würd auch versuchen mich rein zu arbeiten. Nur bräuchte ich halt hinweise wie ich das ganze angehen soll um nicht Planlos durch alle Numerik-Themengebiete stolpern zu müssen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Korrekturfaktorberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Do 20.12.2012
Autor: ullim

Hi,

Du kannst als numerisches Verfahren ja das Newton Verfahren verwenden. Das sollte auch in Excel möglich sein. Schau mal hier []http://de.wikipedia.org/wiki/Newton-Verfahren

Ist die Gleichung übrigens so zu interpretieren

[mm] \bruch{Q-1}{Q+1}=\bruch{f}{ln(2)}*arcosh\left(\bruch{exp^{\bruch{ln(2)}{f}}}{2}\right). [/mm]


Wenn ja, dann muss man sich auch noch Gedanken über den Wertebereich von [mm] \bruch{exp^{\bruch{ln(2)}{f}}}{2} [/mm] machen, oder ist die Gleichung so zu interpretieren

[mm] \bruch{Q-1}{Q+1}=\bruch{f}{ln(2)}*\bruch{1}{cosh\left(\bruch{exp^{\bruch{ln(2)}{f}}}{2}\right)} [/mm]


Bezug
                
Bezug
Korrekturfaktorberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 Fr 21.12.2012
Autor: metzelmax

Hallo und vielen Dank für die schnelle Antwort

Die Gleichung ist so zu interpretieren wie deine erste angabe, also mit arccosh.

Die Ergebnisse der Funktion kann man grafisch auftragen und f in Abhängigkeit von Q darstellen. Ist im Prinzip auch auf []diesem Bild sehen (nur nutzen die dort anstelle von Q ein Widerstandsverhältnis). Also ist die Funktion für alle Q größer 1 definiert.
Der Korrekturfaktor selbst kann maximal 1 annehmen, ist im Normalfall jedoch kleiner. Negativ kann dieser aber nicht werden.

Ich werd mich mal bei dem Wikipedialink zum Newton-Verfahren belesen. Vielleicht finde ich da ja bereits einen Ansatz. Danke erst mal dafür.

Bezug
        
Bezug
Korrekturfaktorberechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 So 20.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de