www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Korrelation
Korrelation < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 Fr 30.05.2014
Autor: rollroll

Aufgabe
Es seien X und Y unabhängige Bernoulli-verteilte Zufallsvariablem mit Parameter 1/2.
Untersuche, ob X+Y und |X-Y| unkorreliert und / oder unabhängig sind.

Hallo!

Sei [mm] Z_1 [/mm] = X+Y.
Dann ist:
[mm] P(Z_1 [/mm] = 2)=1/4
[mm] P(Z_1 [/mm] = 1)=1/2
[mm] P(Z_1 [/mm] = 0)=1/4

E(X+Y)=1

Sei [mm] Z_2=|X-Y| [/mm]
Dann ist:
[mm] P(Z_2 [/mm] = 0)= 1/2

[mm] P(Z_2 [/mm] = 1)= 1/2

E(|X-Y|)=1/2

X+Y und |X-Y| sind unkorreliert, wenn Cov(X+Y, |X-Y|)=0.

[mm] Cov(Z_1, Z_2)= E(Z_1*Z_2)-E(Z_1)*E(Z_2). [/mm]
= 0-1/2 = -1/2. Stimmt das?

Denn es ist ja. [mm] Z_1*Z_2=X^2-Y^2 [/mm] (X>Y, sonst umgekehrt)
[mm] E(X^2-Y^2)=1/4-1/4=0 [/mm]

Daraus folgt dass [mm] Z_1 [/mm] und [mm] Z_2 [/mm] nicht unabhängig sind.

        
Bezug
Korrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Fr 30.05.2014
Autor: Diophant

Hallo,

> Es seien X und Y unabhängige Bernoulli-verteilte
> Zufallsvariablem mit Parameter 1/2.
> Untersuche, ob X+Y und |X-Y| unkorreliert und / oder
> unabhängig sind.
> Hallo!

>

> Sei [mm]Z_1[/mm] = X+Y.
> Dann ist:
> [mm]P(Z_1[/mm] = 2)=1/4
> [mm]P(Z_1[/mm] = 1)=1/2
> [mm]P(Z_1[/mm] = 0)=1/4

>

> E(X+Y)=1

>

> Sei [mm]Z_2=|X-Y|[/mm]
> Dann ist:
> [mm]P(Z_2[/mm] = 0)= 1/2

>

> [mm]P(Z_2[/mm] = 1)= 1/2

>

> E(|X-Y|)=1/2

>

> X+Y und |X-Y| sind unkorreliert, wenn Cov(X+Y, |X-Y|)=0.

>

> [mm]Cov(Z_1, Z_2)= E(Z_1*Z_2)-E(Z_1)*E(Z_2).[/mm]
> = 0-1/2 = -1/2.
> Stimmt das?

>

> Denn es ist ja. [mm]Z_1*Z_2=X^2-Y^2[/mm] (X>Y, sonst umgekehrt)
> [mm]E(X^2-Y^2)=1/4-1/4=0[/mm]

>

> Daraus folgt dass [mm]Z_1[/mm] und [mm]Z_2[/mm] nicht unabhängig sind.

Für mich sieht das so im großen und ganzen richtig aus. Das mit der Fallunterscheidung halte ich für etwas unschön, benutze doch

X+Y>0 [mm] \Rightarrow (X+Y)*|X-Y|=|X^2-Y^2| [/mm]

Dann benötigst du deine Fallunterscheidung nicht. In beiden Fällen kommt ja glücklicherweise Null heraus, von daher muss man sich an dieser Stelle mit der Schwierigkeit beider Varianten, falls dies nicht so wäre, auch nicht herumplagen. :-)

Gruß, Diophant

Bezug
                
Bezug
Korrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Fr 30.05.2014
Autor: rollroll


>  
> Für mich sieht das so im großen und ganzen richtig aus.
> Das mit der Fallunterscheidung halte ich für etwas
> unschön, benutze doch
>  
> X+Y>0 [mm]\Rightarrow (X+Y)*|X-Y|=|X^2-Y^2|[/mm]
>  
> Dann benötigst du deine Fallunterscheidung nicht. In
> beiden Fällen kommt ja glücklicherweise Null heraus, von
> daher muss man sich an dieser Stelle mit der Schwierigkeit
> beider Varianten, falls dies nicht so wäre, auch nicht
> herumplagen. :-)
>  
> Hallo, das verstehe ich nicht ganz.

Es wäre aber doch [mm] E(|X^2-Y^2|)=1/2 [/mm]

Womit dann [mm] Z_1 [/mm] und [mm] Z_2 [/mm] doch unkorreliert wären, entgegen dem was ich eben geschrieben hatte.

Bezug
                        
Bezug
Korrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Fr 30.05.2014
Autor: Diophant

Hallo,

> Hallo, das verstehe ich nicht ganz.
>

> Es wäre aber doch [mm]E(|X^2-Y^2|)=1/2[/mm]

>

Ja, so ist es auch. D.h., da war vorher ein Fehler drin, eben dadurch, dass du nur den Fall X>Y betrachtet hast.

Gruß, Diophant

Bezug
                                
Bezug
Korrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Fr 30.05.2014
Autor: rollroll

Achso, ok.
Mir war es nur nicht ganz klar, weil du eben nicht geschrieben hattest dass noch ein Fehler in meiner Rechnung steckt.
Reicht es bei der Unabhängigkeit wie folgt zu argumentieren:
[mm] P(Z_1=1)*P(Z_2=1)=1/4 [/mm] , aber [mm] P(Z_3=1)=1/2 [/mm]

mit [mm] Z_3= |X^2-Y^2|, [/mm] weshalb [mm] Z_1 [/mm] und [mm] Z_2 [/mm] nicht unabhängig sind.

Bezug
                                        
Bezug
Korrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Fr 30.05.2014
Autor: Diophant

Hallo,

> Achso, ok.
> Mir war es nur nicht ganz klar, weil du eben nicht
> geschrieben hattest dass noch ein Fehler in meiner Rechnung
> steckt.

Ja, ich habe da wohl nebenher ein wenig geschlafen...

> Reicht es bei der Unabhängigkeit wie folgt zu
> argumentieren:
> [mm]P(Z_1=1)*P(Z_2=1)=1/4[/mm] , aber [mm]P(Z_3=1)=1/2[/mm]

>

> mit [mm]Z_3= |X^2-Y^2|,[/mm] weshalb [mm]Z_1[/mm] und [mm]Z_2[/mm] nicht unabhängig
> sind.

Ja klar, das ist ja einfach die Definition der stochastischen Unabhängigkeit angewendet. [ok]

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de