www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Korrelation Zufallsvariablen
Korrelation Zufallsvariablen < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrelation Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Fr 24.06.2016
Autor: Hejo

Aufgabe
Es sei [mm] (X_t)_{t \in\IN} [/mm] ein Prozess unabhängiger und identisch verteilter Zufallsvariablen  mit [mm] X_t \sim [/mm] N(0,1). Durch [mm] D_t=X_t-X_{t-1}, X_0=0 [/mm] ist ein neuer Prozess [mm] (D_t)_{t \in\IN} [/mm] definiert.

Berechnen Sie die [mm] Corr[D_t,D_{t-1}] [/mm] für t [mm] \ge [/mm] 2

[mm] V[D_t]= \begin{cases} 1, & \mbox{t=1} \\ 2, & \mbox{t >= 2} \end{cases} [/mm]

[mm] Corr[D_t,D_{t-1}]=\bruch{Cov[D_t,D_{t-1}]}{(V[D_t]V[D_{t+1}])^{0,5}}=\bruch{Cov[D_t,D_{t-1}]}{2}=\bruch{1}{2}(E[D_tD_{t+1}]-E[D_t]E[D_{t+1}])=\bruch{1}{2}(E[D_tD_{t+1}]=\bruch{1}{2}(\bruch{1}{2}E[(D_t+D_{t+1})^2-\bruch{1}{2}D^2_t-\bruch{1}{2}D^2_{t+1}]= [/mm]

[mm] \bruch{1}{2}(\bruch{1}{2}E[(D_t+D_{t+1})^2]-\bruch{1}{2}E[D^2_t]-\bruch{1}{2}E[D^2_{t+1}]=\bruch{1}{2}(\bruch{1}{2}4-\bruch{1}{2}2-\bruch{1}{2}2)=0 [/mm]

Irgendwo muss ich einen Fehler machen. Eigentlich müsste [mm] -\bruch{1}{2} [/mm] rauskommen

        
Bezug
Korrelation Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Fr 24.06.2016
Autor: Gonozal_IX

Hiho,

> [mm]\bruch{1}{2}(\bruch{1}{2}E[(D_t+D_{t+1})^2]-\bruch{1}{2}E[D^2_t]-\bruch{1}{2}E[D^2_{t+1}]=\bruch{1}{2}(\bruch{1}{2}4-\bruch{1}{2}2-\bruch{1}{2}2)=0[/mm]

Deine 4 stimmt nicht, da kommt eine 2 raus.
Deine Rechnung ist aber auch unnötig kompliziert, wieso formst du so grandios schräg um?

Du kannst doch [mm] $E[D_tD_{t+1}]$ [/mm] direkt ausrechnen, exakt so, wie du es vermutlich auch mit [mm] $E\left[(D_t + D_{t+1})^2\right]$ [/mm] gemacht hast.

Gruß,
Gono

Bezug
                
Bezug
Korrelation Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Sa 25.06.2016
Autor: Hejo

Zur 4: ich dachte die Varianzen addieren sich bei normalverteilten Zufallsvariablen.

Wie rechnet man [mm] E[D_t,D_{t+1}] [/mm] aus?

Bezug
                        
Bezug
Korrelation Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Sa 25.06.2016
Autor: Gonozal_IX

Hiho,

> Zur 4: ich dachte die Varianzen addieren sich bei normalverteilten Zufallsvariablen.

Nein, die Varianzen addieren sich bei unabhängigen Zufallsvariablen. Da steht ja aber nicht die Varianz…

> Wie rechnet man [mm]E[D_t,D_{t+1}][/mm] aus?

Erstmal: Da steht kein Komma. Dann: Definition von [mm] $D_t$ [/mm] verwenden, und dann einfach die Linearität des Erwartungswerts nutzen. Dort kommen nur Größen vor, die du kennst…

Gruß,
Gono



Bezug
                                
Bezug
Korrelation Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Sa 25.06.2016
Autor: Hejo


> Nein, die Varianzen addieren sich bei unabhängigen
> Zufallsvariablen. Da steht ja aber nicht die Varianz…

aber da steht doch das zweite nicht zentrale Moment, dass der Varianz entspricht, da [mm] \mu [/mm] = 0? Woher weiß man, dass das genau 2 ist?

> > Wie rechnet man [mm]E[D_tD_{t+1}][/mm] aus?
>
>  Definition von [mm]D_t[/mm]
> verwenden, und dann einfach die Linearität des
> Erwartungswerts nutzen. Dort kommen nur Größen vor, die
> du kennst…

Also [mm] E[D_tD_{t+1}]=E[(X_t-X_{t-1})(X_{t+1}-X_{t})] [/mm] usw.



Bezug
                                        
Bezug
Korrelation Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Sa 25.06.2016
Autor: Gonozal_IX

Hiho,

> aber da steht doch das zweite nicht zentrale Moment, dass
> der Varianz entspricht, da [mm]\mu[/mm] = 0?

Da steht aber das zweite Moment einer Summe! Das ist i.A. nicht gleich der Summe der zweiten Momente!


> Woher weiß man, dass das genau 2 ist?

Indem man es ausrechnet! Definition einsetzen!

> > > Wie rechnet man [mm]E[D_tD_{t+1}][/mm] aus?
> >
> >  Definition von [mm]D_t[/mm]

> > verwenden, und dann einfach die Linearität des
> > Erwartungswerts nutzen. Dort kommen nur Größen vor, die
> > du kennst…
>  
> Also [mm]E[D_tD_{t+1}]=E[(X_t-X_{t-1})(X_{t+1}-X_{t})][/mm] usw.

Ja.
Und glücklicherweise sind die [mm] X_t [/mm] ja alle unabhängig, sonst könnte man da nicht viel ausrechnen…

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de