www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Korrelationskoeffizient
Korrelationskoeffizient < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrelationskoeffizient: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:37 Mi 14.05.2014
Autor: Cyborg

Aufgabe
X und Y seien Zufallsvariable mit folgenden Verteilungen:

  x       1       2        4
P(X=x)   1/4   41/120   49/120

  y       2       4        8
P(Y=y)   2/5     2/5       1/5

Die Verteilung des Produktes sei gegeben durch:

   z            2         4           8           16       32
P(XY=z)       1/30      4/15        5/12      99/360       1/120

Berechnen und interpretieren Sie den Wert des Korrelationskoeffizienten zwischen X und Y,

[mm] \mathcal{P}(X,Y) [/mm] := [mm] \bruch{Cov (X,Y)}{\sigma (X) \sigma (Y)} [/mm]


So, ich habe angefangen mit

[mm] \mathcal{P}(X,Y) [/mm] := [mm] \bruch{E(XY) - E(X)E(Y))}{\sigma (X) \sigma (Y)} [/mm]

E(X)= 77/30
E(Y)= 4
[mm] \sigma [/mm] (X)= 1,249
[mm] \sigma [/mm] (Y) = 2,19

bleibt nur noch die Berechnung von E(XY). Da X und Y nicht unabhängig sind, berechne ich das dann mit
[mm] \summe_{x}^{}\summe_{y}^{} [/mm] xy P(X=x) P(Y=y) ?

und wie komme ich eigentlich auf die Tabellenwerte von z?


        
Bezug
Korrelationskoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Do 15.05.2014
Autor: luis52


>  
> und wie komme ich eigentlich auf die Tabellenwerte von z?
>  

Moin, du "kommst" gar nicht, die sind anscheinend (unvollstaendig) vorgegeben.

Bezug
                
Bezug
Korrelationskoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Fr 16.05.2014
Autor: Cyborg

Hallo,

unser Dozent hat es jetzt nachträglich korrigiert

für z= 8 : 5/12
     z=16: 99/360
     z=32:  1/120


ich habe für den Korrelationskoeffizienten nun -0,414 rausbekommen. Ist das richtig? und was sagt mir das jetzt?
also reicht als Interpretation, dass ein gegenläufiger Zusammenhang besteht?

Bezug
                        
Bezug
Korrelationskoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Fr 16.05.2014
Autor: luis52


> ich habe für den Korrelationskoeffizienten nun -0,414
> rausbekommen. Ist das richtig?

Weiss ich nicht. rechne doch mal vor.

> und was sagt mir das jetzt?
> also reicht als Interpretation, dass ein gegenläufiger
> Zusammenhang besteht?

$X$ und $Y$ sind (schwach) negativ korreliert.



Bezug
                                
Bezug
Korrelationskoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Fr 16.05.2014
Autor: Cyborg


>
> Weiss ich nicht. rechne doch mal vor.
>  

> [mm]X[/mm] und [mm]Y[/mm]


also die Werte habe ich ja oben schon ausgerechnet und für E(XY) hab ich 137/15 raus. Wenn ich das dann alles in die Gleichung einsetze, komm ich dann auf die -0,414.


Bezug
                                        
Bezug
Korrelationskoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Sa 17.05.2014
Autor: luis52


>
> also die Werte habe ich ja oben schon ausgerechnet und für
> E(XY) hab ich 137/15 raus.

Ah, wer lesen kann, ist im Vorteil. Das errechne ich auch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de