www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Korrelierte ZG
Korrelierte ZG < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrelierte ZG: Normalverteilung
Status: (Frage) beantwortet Status 
Datum: 10:30 Mi 10.04.2013
Autor: Reduktion

Aufgabe
[mm] Y_1,..,Y_n [/mm] ist eine Folge st.u. p-dimensionaler [mm] \mathcal{N}_p(0,\Sigma_i)-verteilter [/mm] ZG, mit i=1,..,n und p<n. Die Kovarianzmatrizen sollen Elemente einer endlichen Menge M von Kovarianzmatrizen sein, mit Kardinalität |M|=p.


Hallo zusamen,

wären die ZG aus dem Aufgabenteil [mm] \mathcal{N}_p(0,\sigma^2I_p), [/mm] dann wäre die Summe [mm] \frac{(Y_{11}^2+..+Y_{1p}^2)}{\sigma^2}+..+\frac{(Y_{n1}^2+..+Y_{np}^2)}{\sigma^2} \sim \chi^2_{np}-verteilt. [/mm]

Lässt sich für die Summe [mm] (Y_{11}^2+..+Y_{1p}^2)+..+(Y_{n1}^2+..+Y_{np}^2) [/mm] bei festen p für für große n eine Verteilung angeben? Also das bei einer hohen Anzahl n die Korrelationen innerhalb der [mm] (Y_{i1}^2,..,Y_{ip}^2) [/mm] nicht weiter von Bedeutung sind?

        
Bezug
Korrelierte ZG: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 10.04.2013
Autor: steppenhahn

Hallo,

 > [mm]Y_1,..,Y_n[/mm] ist eine Folge st.u. p-dimensionaler

> [mm]\mathcal{N}_p(0,\Sigma_i)-verteilter[/mm] ZG, mit i=1,..,n und
> p<n. Die Kovarianzmatrizen sollen Elemente einer endlichen
> Menge M von Kovarianzmatrizen sein, mit Kardinalität
> |M|=p.



> wären die ZG aus dem Aufgabenteil
> [mm]\mathcal{N}_p(0,\sigma^2I_p),[/mm] dann wäre die Summe
> [mm]\frac{(Y_{11}^2+..+Y_{1p}^2)}{\sigma^2}+..+\frac{(Y_{n1}^2+..+Y_{np}^2)}{\sigma^2} \sim \chi^2_{np}-verteilt.[/mm]

>

> Lässt sich für die Summe
> [mm](Y_{11}^2+..+Y_{1p}^2)+..+(Y_{n1}^2+..+Y_{np}^2)[/mm] bei festen
> p für für große n eine Verteilung angeben? Also das bei
> einer hohen Anzahl n die Korrelationen innerhalb der
> [mm](Y_{i1}^2,..,Y_{ip}^2)[/mm] nicht weiter von Bedeutung sind?


Ich glaube nicht, dass es eine Chi-Quadrat-Verteilung wird. Aber du kannst doch auf dem folgenden Weg eine Chi-Quadrat-Verteilung erreichen:

Die [mm] $\Sigma_i$ [/mm] sind positiv definit, und somit kann man [mm] $\Sigma_i^{1/2}$ [/mm] berechnen. Es gilt dann

[mm] $X_i [/mm] := [mm] \Sigma_i^{-1/2}Y_i \sim [/mm] N(0, [mm] I_p)$. [/mm]

und somit

[mm] $(X_{11}^2 [/mm] + ... + [mm] X_{1p}^2) [/mm] + ... + [mm] (X_{n1}^2 [/mm] + ... + [mm] X_{np}^2)\sim \chi^{2}_{np}$. [/mm]

Sollte das nicht genügen :-), kannst du dir ja mal die []Wishart Verteilung anschauen.


Viele Grüße,
Stefan

Bezug
                
Bezug
Korrelierte ZG: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:24 Do 11.04.2013
Autor: Reduktion

Aufgabe
Sei [mm] \(W_r\) [/mm] ein beliebiger, linearer, r-dimensionaler Unterraum von [mm] \(\mathbb{R}^n\) [/mm] und [mm] Y=\zeta+\epsilon [/mm] ein p-Stichprobenmodell mit [mm] \(\zeta\in W_r\). [/mm]
Sei [mm] \(\lbrace\upsilon_1,\ldots,\upsilon_n\rbrace\) [/mm] eine orthonormale Basis des [mm] \(\mathbb{R}^n\), [/mm] so dass [mm] \(\upsilon_1,\ldots,\upsilon_r\) [/mm] den linearen Unterraum [mm] \(W_r\) [/mm] aufspannen und [mm] \(A:=(\upsilon_1,\ldots,\upsilon_n)\). [/mm] Definiere
[mm] Z_i:=\left\langle Y,\upsilon_i\right\rangle [/mm] und [mm] \eta_i:=\left\langle \zeta, \upsilon_i\right\rangle, [/mm] dann heißt [mm] Z=AY=A\zeta+A\epsilon=\eta+\epsilon^\ast [/mm] die kanonische Form des allgemeinen linearen Modells. Dabei ist [mm] Z\sim\mathcal{N}_n(\eta,\sigma^2I_n) [/mm]


Hi Stefan,

das hilft mir beides noch nicht weiter. Denn es ist folgendes Problem, dabei beziehe ich mich auf das im Aufgabenteil genannte Modell:

Gegeben sei ein Testproblem $ [mm] H_0: \zeta\in W_q [/mm] $ gegen [mm] H_1: \zeta\in W_r\setminus W_q, [/mm] dann ergibt sich aus dem Likelihood-Quotienten Test, die Testgöße [mm] T_n(Y)=\frac{n-r}{r-q}\frac{\|Y-\widehat{\zeta}_0(Y)\|^2-\|Y-\widehat{\zeta}(Y)\|^2}{\|Y-\widehat{\zeta}(Y)\|^2}=\frac{n-r}{r-q}\frac{\sum_{i=q+1}^rZ_i^2}{\sum_{i=r+1}^nZ_i^2}. [/mm]

Jetzt kann in der letzten Gleichheit den Bruch nicht einfach mit [mm] \sigma^2/\sigma^2 [/mm] erweitern um die Verteilung von Zähler und Nenner zu bestimmen, falls die [mm] Z_i [/mm] bzw. [mm] Y_i [/mm] korreliert sind.

Weiter könnte man Zähler und Nenner als quadratische Form auffassen, was dazu führt das man den Zähler und Nenner als gewichtete Summe [mm] \chi^2_1 [/mm] -verteilter ZG auffassen kann.

Was ich aber aus den Darstellungen nicht gewinne ist die Verteilung vom Zähler und Nenner oder wenigstens deren Grenzverteilung für große n, falls die ZG korrelieren.

Bezug
                        
Bezug
Korrelierte ZG: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Sa 13.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de