www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kov zw. Mittelw. und Var.
Kov zw. Mittelw. und Var. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kov zw. Mittelw. und Var.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Mo 20.03.2006
Autor: ivo82

Aufgabe
Stelle KOV( [mm] \overline{X}, S^{2}) [/mm] mit Hilfe der Momente dar!
Wann ist diese 0?

Angenommen [mm] X_{1},...,X_{n} [/mm] sei eine Zufallsstichprobe und es existieren die ersten vier Momente der [mm] X_{i} [/mm] ´s dann ist die Kovarianz zwischen dem Stichprobenmittelwert [mm] (\overline{X}) [/mm] und der Stichprobenvarianz [mm] (S^{2}) [/mm] zu berechnen.
Ich hab da zunächst diesen Ansatz:
[mm] E[(\overline{X}-E(\overline{X}))*(S^{2}-E(S^{2}))] [/mm]
Für [mm] S^{2} [/mm] hab ich [mm] \bruch{1}{n-1}*([ \summe_{i=1}^{n}X_{i}^{2}]-n*\overline{X}^{2}) [/mm] eingesetzt.
Für [mm] E(S^{2}) [/mm] hab ich folgende Formel aus der Vorlesung verwendet:
[mm] \bruch{n}{n-1}*[E(X_{i}^2)-E(\overline{X})^2]. [/mm]
[mm] E(\overline{X}) [/mm] hab ich einfach gelassen.
Nach langem Rechnen bin ich dann auf folgendes Resultat gekommen:
[mm] \bruch{n}{n-1}*[\overline{X}*E(\overline{X})^{2}-\overline{X}^{3}-E(\overline{X})^{3}+\overline{X}^2*E(\overline{X})] [/mm]
Nullsetzen brachte mich schließlich auf:
[mm] \overline{X}=-E(\overline{X}) [/mm]
als Bednigung für eine Kovarianz von 0, irgendwo hat sich ein Vorzeichenfehler eingeschlichen ich neheme an [mm] \overline{X}=E(\overline{X}) [/mm] macht mehr Sinn, d.h. wenn der Stichprobenmittelwert exakt dem Mittelwert in der Grundgesamtheit entspricht ist die Kovarianz 0.
Stimmt das oder bin ich völlig auf dem Holzweg, bzw. wie kann ich das Ergebnis weiter oben in Form von Momenten anschreiben?

Ich habe diese Frage in keinem anderen Internet Forum gestellt

        
Bezug
Kov zw. Mittelw. und Var.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:29 Mi 22.03.2006
Autor: djmatey

Hallo,
ich bekomme da raus, dass
Cov( [mm] \overline{X},S^{2}) [/mm] = [mm] \bruch{2n}{n-1} E(\overline{X})^{3} [/mm]
ist.
Und das ist genau dann gleich 0, wenn
[mm] E(\overline{X}) [/mm] = 0
gilt.
Es kommt mir auch komisch vor, dass in Deinem Ergebnis noch [mm] \overline{X} [/mm] vorkommt, denn Du nimmst ja den Erwartungswert des Ganzen...
Beste Grüße,
Matthias.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de