Kovarianz < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] X_1,...,X_n [/mm] seien unabhängig N(0,1)-verteilt.
1) Was ist [mm] Kov(X_1-\overline{X_n},\overline{X_n})?
[/mm]
2) Wie ist [mm] Kov(X_1-\overline{X_n},\overline{X_n}) [/mm] verteilt?
3) Sind [mm] X_1-\overline{X_n} [/mm] und [mm] \overline{X_n} [/mm] unabhängig? |
Hallo!
Bei dieser Aufgabe stehe ich ziemlich auf dem Schlauch!
[mm] \overline{X_n}=\bruch{1}{n} \summe_{i=1}^n X_i
[/mm]
Daher habe ich [mm] X_1-\overline{X_n}=\bruch{n-1}{n}X_1-\bruch{1}{n} \summe_{i=2}^n X_i [/mm] berechnet.
Und da hört es auch schon auf.
Ich weiß, dass die Kov(X,Y)=0, wenn X und Y unabhängig,
also sollte man vielleicht zuerst 3) bearbeiten...
aber ich bekomme keinen Zugang dazu.
Kann mir da jemand weiter helfen?
Das wäre klasse!
Grüßle, Lily
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:07 So 11.01.2015 | Autor: | luis52 |
Zu 1) Es gilt $Kov[X+Y,U+V]=Kov[X,U]+Kov[X,V]+Kov[Y,U]+Kov[Y,V]$
Zu 2) Die Aufgabenstellung ergibt keinen Sinn.
Zu 3) Es kann sein, dass Kovarianz nicht null ist. Dann sind sie auch nicht unabhaengig.
|
|
|
|
|
Danke erstmal!
> Zu 1) Es gilt
> [mm]Kov[X+Y,U+V]=Kov[X,U]+Kov[X,V]+Kov[Y,U]+Kov[Y,V][/mm]
Hm, dann habe ich:
[mm] Kov(X_1-\overline{X_n},\overline{X_n})=Kov(X_1,\overline{X_n})-Kov(\overline{X_n},\overline{X_n})
[/mm]
[mm] =E(X_1*\overline{X_n})+E(X_1)*E(\overline{X_n})-Var(\overline{X_n})
[/mm]
Aber ohne weitere Info komme ich nun nicht weiter, denn [mm] X_1 [/mm] und [mm] \overline{X_n} [/mm] sind ja nicht unabhängig, oder?
Oder wie könnte es weiter gehen?
> Zu 2) Die Aufgabenstellung ergibt keinen Sinn.
Hups, ich hab mich verschrieben, vor lauter Kovarianz...
Es ist die Frage nach der Verteilung von [mm] (X_1-\overline{X_n},\overline{X_n})
[/mm]
> Zu 3) Es kann sein, dass Kovarianz nicht null ist. Dann
> sind sie auch nicht unabhaengig.
|
|
|
|
|
> Danke erstmal!
>
> > Zu 1) Es gilt
> > [mm]Kov[X+Y,U+V]=Kov[X,U]+Kov[X,V]+Kov[Y,U]+Kov[Y,V][/mm]
>
> Hm, dann habe ich:
>
> [mm]Kov(X_1-\overline{X_n},\overline{X_n})=Kov(X_1,\overline{X_n})-Kov(\overline{X_n},\overline{X_n})[/mm]
>
> [mm]=E(X_1*\overline{X_n})+E(X_1)*E(\overline{X_n})-Var(\overline{X_n})[/mm]
>
> Aber ohne weitere Info komme ich nun nicht weiter, denn [mm]X_1[/mm]
> und [mm]\overline{X_n}[/mm] sind ja nicht unabhängig, oder?
>
> Oder wie könnte es weiter gehen?
Ist schon mal nicht schlecht. Und nun ist ja
[mm]\operatorname{Kov}(X_1,\overline{X_n})=\operatorname{Kov}\left(X_1,\frac{X_1}{n}+\ldots+\frac{X_1}{n}\right)[/mm]
und Du kannst den Tipp nochmal anwenden.
Gruss,
Hanspeter
|
|
|
|