www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Kovarianzmatrix Univariate
Kovarianzmatrix Univariate < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianzmatrix Univariate: Verständnis
Status: (Frage) beantwortet Status 
Datum: 21:44 Fr 19.07.2019
Autor: magics

Aufgabe
Jede beliebige Definition, wie man eine Kovarianzmatrix berechnet, beginnt zunächst mit einem Spaltenvektor:

[mm] $\displaystyle \mathbf [/mm] {X} [mm] =(X_{1},X_{2},...,X_{n})^{\mathrm {T} }$ [/mm]

Damit wird das die Kovarianzmatrix definiert:

[mm] $\displaystyle \operatorname [/mm] {K} [mm] _{X_{i}X_{j}}=\operatorname [/mm] {cov} [mm] [X_{i},X_{j}]=\operatorname [/mm] {E} [mm] [(X_{i}-\operatorname [/mm] {E} [mm] [X_{i}])(X_{j}-\operatorname [/mm] {E} [mm] [X_{j}])]$ [/mm]


Hallo und guten Abend,

ich verstehe das Konzept der Kovarianzmatrix am Beispiel einer univariaten Zufallsvariablen nicht. Ich dachte bisher, dass man Kovarianz immer nur an zwei- oder höherdimensionalen Datensätzen berechnen kann. Dafür gäbe es dann ja auch diese Darstellung zwei Dimensionen: [mm] $\displaystyle \operatorname [/mm] {Cov} [mm] (\mathbf [/mm] {x} [mm] ,\mathbf [/mm] {y} [mm] )=\operatorname [/mm] {E} [mm] {\bigl (}(\mathbf [/mm] {x} [mm] -{\boldsymbol {\mu }})(\mathbf [/mm] {y} [mm] -{\boldsymbol {\nu }})^{\top }{\bigr )}$ [/mm]

Bei einer univariaten Datenmenge hat man doch einfach nur irgendwelche Zahlen... wo soll da Korrelation herkommen? Ich kann diese ja nur entlang einer Dimension betrachten..?

Beste Grüße
Thomas


        
Bezug
Kovarianzmatrix Univariate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Sa 20.07.2019
Autor: magics

Nachdem ich ein Beispiel selbst gerechnet habe, stelle ich fest, dass der Spaltenvektor $ [mm] \displaystyle \mathbf [/mm] {X} [mm] =(X_{1},X_{2},...,X_{n})^{\mathrm {T} } [/mm] $ ein Vektor von Zufallsvariablen meint und wir damit gar keine univariate Reihe haben... macht ja auch sowas von keinen Sinn.

Bezug
        
Bezug
Kovarianzmatrix Univariate: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Sa 20.07.2019
Autor: Gonozal_IX

Hiho,

auch wenn du deine Frage (fast) selbst beantwortet hast, noch eine etwas ausführlichere Antwort:

Nehmen wir also an du hast eine Folge [mm] $(x_n)_{n\in\IN}$ [/mm] von univariaten Zufallswerten.
Man koennte nun annehmen, dass dies alle Realisierungen einer Zufallsvariablen X sind, zu unterschiedlichen [mm] $\omega$s, [/mm] also: [mm] $x_i [/mm] = [mm] X(\omega_i)$ [/mm]

In diesem Fall ist dein Einwand berechtigt, man kann keine Kovarianz von einer einzigen Zufallsvariablen berechnen.

Im Allgemeinen nimmt man aber an, dass die [mm] x_i [/mm] Realisierungen sind von verschiedenen Zufallsvariablen, die alle derselben Verteilung unterliegen, zum selben [mm] $\omega$. [/mm]
D.h. [mm] $x_i [/mm] = [mm] X_i(\omega)$ [/mm]

Und dann kannst du natürlich die Kovarianz der obigen [mm] $X_i$ [/mm] bestimmen.

Gruss,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de