www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kreisberechnungen
Kreisberechnungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisberechnungen: Tangente an Kreis
Status: (Frage) beantwortet Status 
Datum: 22:08 Mo 30.05.2005
Autor: dtm

Hi,
wer kann mir bei der folgenden Aufgabe helfen:

"Gegeben ist ein Kreis k mit dem Mittelpunkt M(0|0) und dem Radius r sowie eine Gerade g durch die Gleichung g:y=-x+2.
Bestimme den Radius r des Kreises k so, dass die Gerade g Tangente an den Kreis k wird."

Bis jetzt habe ich folgenden Lösungsansatz gefunden:

g:y=-x+2
k:x²+y²=r²
[mm] k:y=\wurzel{r²-x²} [/mm]
Gleichsetzen: [mm] -x+2=\wurzel{r²-x²} [/mm]

Für eure Hilfe wäre ich sehr dankbar. Die Lösung [mm] r=\wurzel{2} [/mm] wurde mir mitgeteilt, jedoch habe ich Probleme beim Rechnenweg,
Schon einmal vielen Dank an euch.
ciau

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreisberechnungen: Steigung berücksichtigen
Status: (Antwort) fertig Status 
Datum: 08:16 Di 31.05.2005
Autor: Roadrunner

Hallo dtm,

[willkommenmr] !!


Aus der Geometrie solltest Du vielleicht noch wissen, daß der Radius immer senkrecht auf die jeweilige Tangente steht.

Das heißt die Gerade [mm] $\overline{MB} [/mm] \ = \ [mm] g_{MB} [/mm] \ = \ [mm] g_r$, [/mm] die durch den Mittelpunkt M(0;0) und den zu ermittelnden Berührpunkt [mm] $B\left(x_B; y_B\right)$ [/mm] verläuft, hat die Form:

[mm] $g_{MB} [/mm] \ = \ [mm] g_r [/mm] \ = \ [mm] m_r [/mm] * x$ (Ursprungsgerade, da Mittelpunkt im Ursprung)

Da [mm] $g_r$ [/mm] und gegebene Gerade (= Tangente) [mm] $g_t [/mm] \ = \ -x+2$ senkrecht aufeinander stehen sollen, gilt also:

[mm] $m_r [/mm] * [mm] m_t [/mm] \ = \ -1$   [mm] $\gdw$ $m_r [/mm] \ = \ - [mm] \bruch{1}{m_t} [/mm] \ = \ - [mm] \bruch{1}{-1} [/mm] \ = \ 1$


Unsere Gerade [mm] $g_r$ [/mm] hat also die Funktionsvorschrift:
[mm] $g_r [/mm] \ = \ 1*x \ = \ x$


Wenn wir nun die beiden Geradengleichungen gleichsetzen, erhalten wir zunächst den x-Wert des Berührpunktes [mm] $x_B$ [/mm] und daraus dann auch die y-Koordinate [mm] $y_B$. [/mm]

[mm] $g_r [/mm] \ [mm] \cap [/mm] \ [mm] g_t$ $\gdw$ $x_B [/mm] \ = \ [mm] -x_B [/mm] + 2$   [mm] $\gdw$ $x_B [/mm] \ = \ ...$


Mit diesen beiden Werten [mm] $x_B$ [/mm] und [mm] $y_B$ [/mm] sollte die Ermittlung des entsprechenden Radius' ja kein größeres Problem mehr darstellen, oder?


Gruß vom
Roadrunner


Bezug
                
Bezug
Kreisberechnungen: DANKE
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Di 31.05.2005
Autor: dtm

Hi,
vielen Dank für die schnelle und hilfreiche Antwort.
Ich weiß auch nicht, warum ich nicht darauf gekommen bin,
dass mit der Normalen zu berechnen.
Jetzt ist Alles klar.
ciau

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de