www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Kreisbögen
Kreisbögen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisbögen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:32 Do 03.07.2008
Autor: delicious

Aufgabe
[mm] f(x)=\pmat{ -\wurzel{1-x^2}+1 falls -1 \le x \le 0 \\ +\wurzel{1-x^2} -1 falls 0 \le x \le 1} [/mm]

Die Funktion ist aus zwei Kreisbögen mit
Radius 1 zusammengesetzt: sie ist auf dem
Intervall ]−1, 1[ differenzierbar.

Wie mache ich das???

        
Bezug
Kreisbögen: Differenzialquotient
Status: (Antwort) fertig Status 
Datum: 09:45 Do 03.07.2008
Autor: Loddar

Hallo delicious!


Kritisch ist hier nur die Nahtstelle der beiden Äste bei [mm] $x_0 [/mm] \ = \ 0$ .
Bilde nun jeweils (linksseitig und rechtsseitig) den Differenzialquotient und überprüfe, ob diese Grenzwerte existieren sowie übereinstimmen.


Gruß
Loddar


Bezug
                
Bezug
Kreisbögen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Do 03.07.2008
Autor: delicious

achso habe vergessen zu schreiben, dass ich zeigen soll, dass die Funktion aus den zwei Kreisbögen mit r=1 besteht

Wie zeige ich das?

Bezug
                        
Bezug
Kreisbögen: Kreisgleichung
Status: (Antwort) fertig Status 
Datum: 10:01 Do 03.07.2008
Autor: Loddar

Hallo delicious!


Forme beide Teilfunktionen in die allgemeine Kreisgleichung [mm] $\left(x-x_M\right)^2+\left(y-y_M\right)^2 [/mm] \ = \ [mm] r^2$ [/mm] um.


Gruß
Loddar


Bezug
                                
Bezug
Kreisbögen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 03.07.2008
Autor: delicious

[mm] f(x)=\begin{cases} -\wurzel{1-x^2}+1, & \mbox{falls } -1\le x<0 \\ +\wurzel{1-x^2}-1, & \mbox{falls } 0\le x < 1 \end{cases} [/mm]

1.Kreisgleichung für
[mm] y=-\wurzel{1-x^2}+1 [/mm]
[mm] y=1-\wurzel{1-x^2} [/mm]
[mm] y-1=-\wurzel{1-x^2} [/mm]
[mm] (y-1)^2=-1-x^2 [/mm]
[mm] 1+x^2+(y-1)^2=0 [/mm]
[mm] x^2+(y-1)^2=-1 [/mm]                => das gibt M(0/-1) und r=1

2.Kreisgleichung
[mm] y=+\wurzel{1-x^2}-1 [/mm]
y=-1+ [mm] \wurzel{1-x^2} [/mm]
[mm] y+1=+\wurzel{1-x^2} [/mm]
[mm] (y+1)^2=1-x^2 [/mm]
[mm] -1+x^2+(y+1)^2=0 [/mm]
[mm] x^2+(y+1)^2=1 [/mm]                => das gibt M(0/1) und r=1

Ist das so richtig???



Bezug
                                        
Bezug
Kreisbögen: Vorzeichenfehler
Status: (Antwort) fertig Status 
Datum: 12:03 Do 03.07.2008
Autor: Loddar

Hallo delicious!


> 1.Kreisgleichung für
> [mm]y=-\wurzel{1-x^2}+1[/mm]
> [mm]y=1-\wurzel{1-x^2}[/mm]
> [mm]y-1=-\wurzel{1-x^2}[/mm]
> [mm](y-1)^2=-1-x^2[/mm]

[notok]  Wo kommt das Minuszeichen vor der 1 auf der rechten Seite her?


> [mm]1+x^2+(y-1)^2=0[/mm]
> [mm]x^2+(y-1)^2=-1[/mm]                => das gibt M(0/-1) und r=1

Das kann doch gar nicht stimmen, wenn [mm] $r^2 [/mm] \ = \ [mm] \red{-}1 [/mm] \ < \ 0$ !!

  

> 2.Kreisgleichung
> [mm]y=+\wurzel{1-x^2}-1[/mm]
> y=-1+ [mm]\wurzel{1-x^2}[/mm]
> [mm]y+1=+\wurzel{1-x^2}[/mm]
> [mm](y+1)^2=1-x^2[/mm]
> [mm]-1+x^2+(y+1)^2=0[/mm]
> [mm]x^2+(y+1)^2=1[/mm]                => das gibt M(0/1) und r=1

[notok] Der Mittelpunkt lautet: [mm] $M_2 [/mm] \ [mm] \left( \ 0 \ | \ \red{-}1 \ \right)$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de