www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Kreise im Koordinatensystem
Kreise im Koordinatensystem < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise im Koordinatensystem: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:55 Fr 21.07.2006
Autor: clafoutis

Aufgabe
Gesucht ist eine Gleichung des Kreises, der durch die Punkte A und B geht und den Radius r hat. Wie viele solcher Kreisee gibt es?
A(0/0), B(8/-2), r=17

hey leute,
Ich verzweifele an dieser Aufgabe... Ich wollte mir diese Aufgabe von meiner Nachhilfe erklären lassen aber die Lösung von ihm stört mich ein wenig... besonders wenn ich das Lösungsheft habe und als Lösung rauskommt:
"Es gibt zwei solcher Kreise. Die Mittelpunkte sind M1(0/-17) und M2(8/15)"
Wäre klasse wenn ihr mir helfen könntet!danke!
clafoutis
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 04:00 Fr 21.07.2006
Autor: Teufel

Hallo! Mein Bild sollte dir zeigen, warum es 2 solcher Kreise geben sollte. Ausrechnen könntest du das folgendermaßen:
Du setzt beide Punkte einmal in eine Kreisgleichung ein. Und dann müsstest du versuchen dieses Gleichungssystem zu lösen und würdest auf die Mittelpunkte beider Kreise kommen. Also:

[mm] x_{M}²+y_{M}²=289 [/mm]
[mm] (8-x_{M})²+(-2-y_{M})²=289 [/mm]

Schaffst du das alleine?


Hier das Bild:
[Dateianhang nicht öffentlich]
Die roten Punkte sind die Punkte A und B.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Kreise im Koordinatensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Fr 21.07.2006
Autor: clafoutis

Ja soweit bin ich auch gekommen. Diesen Weg konnte ich auch nachvollziehen aber der nächste Schritt macht mich ein wenig unsicher. Wenn man jetzt beide Gleichungen auflösen würde, würde man aber nicht trotzdem am Ende mit zwei variablen darstehen?
z.b. [mm] xm_{2}+ym_{2}=17_{2} [/mm] dann würde ja im nächsten schritt dies stehen
       [mm] xm_{2}=17_{2}-ym_{2} [/mm] jetzt könnte man natürlich die wurzel ziehen
       xm=17-ym                         und ab diesen punkt komme ich nicht weiter!
Ich habe jetzt versucht xm durch 17-ym zu ersetzen und dann in die andere gleichung einzusetzen und dann aufzulösen. Bei mir kam dann eben halt etwas total schiefes raus und nichts was der eigentlichen Lösung gleich aussieht. Ich hoffe ihr könnt mir weiterhelfen. Danke für die Hilfe!
clafoutis

Bezug
                        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 21.07.2006
Autor: Teufel

Ja der Fehler ist mir zuerst auch passiert :)
Aber mach es folgendermaßen:
1. Setze erstmal beide Gleichungen gleich
2. [mm] x_{M}² [/mm] und [mm] y_{M}² [/mm] kürzen sich weg und stehen bleiben tut nur [mm] x_{M}, y_{M} [/mm] und ein paar Zahlen :)
3. Dann kannst du nach einer Variable [mm] (x_{M} [/mm] bzw. [mm] y_{M}) [/mm] umstellen und in eine der beiden Gleichung einsetzen (vorzugsweise die 1.) und bist fertig (nach ein bisschen Umstellarbeit ;) )

So schaffst du das eigentlich immer zu lösen, auch wenn du 2 "lange" Gleichungen hättest, wie die 2.

Bezug
                                
Bezug
Kreise im Koordinatensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Fr 21.07.2006
Autor: clafoutis

Ok danke habe ich verstanden.... arrr was mich jetzt aufregt ist die tatsache das meine Nachhilfe, als wir die Aufgabe besprochen haben, gesagt hat das wenn man die beiden Gleichungen gleichsetzen würde, man nicht weiterkommen würde....
egal. ich bin jetzt auf (0/-17) gekommen. Wie bekommt man denn jetzt den anderen Mittelpunkt heraus? und könntest du vielleicht wenn es geht mir die Aufgabe vorrechnen so das ich meinen Rechenweg mit deinen vergleichen kann? wäre echt klasse! danke für alles (wird wohl Zeit dass ich meine Nachhilfe wechsel...)
clafoutis


Bezug
                                        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Fr 21.07.2006
Autor: Teufel

Naja vielleicht hatte er/sie mal einen Blackout ;) Also:

Gesucht ist eine Gleichung des Kreises, der durch die Punkte A und B geht und den Radius r hat. Wie viele solcher Kreise gibt es?
A(0/0), B(8/-2), r=17

[mm] x_{M}²+y_{M}²=289 [/mm]
[mm] (8-x_{M})²+(-2-y_{M})²=289 [/mm]

[mm] x_{M}²+y_{M}²=(8-x_{M})²+(-2-y_{M})² [/mm]

[mm] x_{M}²+y_{M}²=x_{M}²-16x_{M}+64+4+4y_{M}+y_{M}²=x_{M}²-16x_{M}+y_{M}²+4y_{M}+68 [/mm]

[mm] 0=-16x_{M}+4y_{M}+68 [/mm]
Ich stelle mal einfach nach [mm] y_{M} [/mm] um

[mm] y_{M}=4x_{M}-17 [/mm]

Jetzt hast du also eine Möglichkeit gefunden, [mm] y_{M} [/mm] durch irgendwas mit [mm] x_{M} [/mm] auszudrücken. Eingesetzt in die 1. Gleichung ergibt das dann eine altbekannte p-q-Formel :) (die ich aber nicht nach traditioneller Mitternachtsformel lösen muss).

[mm] x_{M}²+y_{M}²=289 \Rightarrow x_{M}²+(4x_{M}-17)²=289 [/mm]

[mm] x_{M}²+16x_{M}²-136x_{M}+289=289 [/mm]
[mm] 17x_{M}²-136x_{M}=0 [/mm]
[mm] x_{M}²-8x_{M}=0 [/mm]
[mm] x_{M}(x_{M}-8)=0 [/mm]

[mm] x_{M1}=0 [/mm]
[mm] x_{M2}=8 [/mm]

Die beiden Punkte könntest du jeweils dann in [mm] y_{M}=4x_{M}-17 [/mm] einsetzen und du kriegst die dazu gehörigen y-Werte des Mittelpunkts.

Bezug
        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Fr 21.07.2006
Autor: riwe

ein etwas anderer weg wäre: alle kreise durch A und B liegen auf der miitelSENKRECHTEN s der strecke AB. wie man leicht sieht hat s die gleichung
y = 4x - 17.
und jetzt weißt du noch - das ist das, was dir vermutlich probleme macht, M hat den abstand 17 von A (und B), liegt also (auch) auf einem kreis K um A mit radius 17::
x² + y² = 289.
K geschnitten mit s liefert das ersehnte, also die 2 gesuchten mittelpunkte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de