www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kreise im Koordinatensystem
Kreise im Koordinatensystem < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise im Koordinatensystem: aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:16 Mi 17.11.2004
Autor: jenta_

Hallo...:)


Folgende Aufgabe: Bestimmen Sie einen Kreis, der die x-Achse berührt und durch die Punkte p(1/2) und q(-3/2) geht.

jetzt habe ich mir gedacht....dass ich ja außer den beiden gegebenen punkten noch weiß...das ein dritter punkt auf diesem kreis liegen muss...der ja dann bei (x/0) liegen würde...kann ich jetzt mit hilfe der anderen beiden punkte und der Kreisgleichung vielleicht x rausbekommen??.....und wie würde ich dann weiterrechen....wie bestimme ich z.b den radius?....

liebe grüßeeeeeee....

        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 17.11.2004
Autor: Fugre


> Hallo...:)
>  
>
> Folgende Aufgabe: Bestimmen Sie einen Kreis, der die
> x-Achse berührt und durch die Punkte p(1/2) und q(-3/2)
> geht.
>  
> jetzt habe ich mir gedacht....dass ich ja außer den beiden
> gegebenen punkten noch weiß...das ein dritter punkt auf
> diesem kreis liegen muss...der ja dann bei (x/0) liegen
> würde...kann ich jetzt mit hilfe der anderen beiden punkte
> und der Kreisgleichung vielleicht x rausbekommen??.....und
> wie würde ich dann weiterrechen....wie bestimme ich z.b den
> radius?....
>  
> liebe grüßeeeeeee....
>  

Hallo Jenta,

also wir kenne die Punkte P(1/2), Q(-3/2) und B(x/0).
Die Punkte P und Q haben sogar noch eine Gemeinsamkeit nämlich die y-Koordinate, das bedeutet sie
sind auf gleicher Höhe. Dadurch wissen wir sogar noch etwas, denn der Mittlelpunkt zwischen diesen
Punkten ist auf einer Höhe mit dem Mittelpunkt des Kreises. Die x-Koordinate der beiden Mittelpunkte
entspricht also der "durchschnittlichen" x-Koordinate der Punkte P und Q. In der Formel heißt das:
[mm] $x_M=\bruch{x_P+x_Q}{2}=\bruch{1-3}{2}=-1 [/mm] $ Lass uns nun schon einmal unser neues Wissen
notieren:
Wir kennen den Mittelpunkt M mit den Koordinaten [mm] $(-1/y_M)$ [/mm]
Jetzt überprüfen wir welche Informationen uns der Punkt [mm] $B(x_B/0) [/mm] gibt.
An diesem Punkt wird die x-Achse   berührt , dass bedeutet er ist entweder höchster oder
tiefster Punkt des Kreises und diese Punkte liegen auf einer vertikalen Linie mit dem Mittelpunkt, haben also
die gleiche x-Koordinate.
Hier bedeutet das, dass [mm] $x_B=x_M=-1$ [/mm] die x-Koordinate des Punktes $ B(-1/0) $ ist.

Also kennen wir folgende Daten:
(1) $P(1/2)$
(2) $Q(-3/2)$
(3) $B(-1/0)$
(4) [mm] $M(-1/y_M)$ [/mm]

Diese Informationen sollten dir für erste helfen, denn jetzt hast du ein Dreieck, dessen Eckpunkte auf einem Kreis liegen.

Liebe Grüße
Fugre

Bezug
        
Bezug
Kreise im Koordinatensystem: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 21:44 Mi 17.11.2004
Autor: LukasApfel

So,
dank meinem Vorantworter weißt du, dass P und Q auf der Selben höhe liegen wie M. Erst hatte ich das ganze durch einsetzen in die Kreisgleichung gelöst, bis mir auffiel, dass wir ja den Punkt M schon komplett wissen.
Mein Vorantworter schrieb:  
[mm] M_{x} [/mm] = -1

Da P, M, Q auf einer Höhe liegen ist auch:
[mm] M_{y} [/mm] = +2

Jetzt muss das ganze noch in eine anständige Kreisgleichung eingesetzt werden:
[mm] r^{2} [/mm] = [mm] \wurzel{(x-x_{M})^{2} + (y-y_{M})^{2}} [/mm]
4 = [mm] \wurzel{(x+1)^{2} + (y-2)^{2}} [/mm]

Bezug
                
Bezug
Kreise im Koordinatensystem: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Do 18.11.2004
Autor: Fugre

Hallo,

> So,
>  dank meinem Vorantworter weißt du, dass P und Q auf der
> Selben höhe liegen wie M

Stop, das stimmt leider nicht bzw. muss nicht gelten. M liegt lediglich auf einer
vertikalen Linie mit dem Mittelpunkt der Strecke PQ.


. Erst hatte ich das ganze durch

> einsetzen in die Kreisgleichung gelöst, bis mir auffiel,
> dass wir ja den Punkt M schon komplett wissen.
>  Mein Vorantworter schrieb:  
> [mm]M_{x}[/mm] = -1
>  
> Da P, M, Q auf einer Höhe liegen ist auch:
>  [mm]M_{y}[/mm] = +2
>  
> Jetzt muss das ganze noch in eine anständige Kreisgleichung
> eingesetzt werden:
>   [mm]r^{2}[/mm] = [mm]\wurzel{(x-x_{M})^{2} + (y-y_{M})^{2}} [/mm]
>   4 =
> [mm]\wurzel{(x+1)^{2} + (y-2)^{2}}[/mm]
>  


Da wir leider den Radius nicht kennen und auch nicht die genaue y-Koordinate
des Mittelpunktes, können wir die Kreisgleichung noch nicht anwenden.
Zur Not würde ich dir empfehlen den Mittelpunkt anhand der Formel für den Umkreismittelpunkt zu ermitteln.
Es gibt aber wahrscheinlich einen einfacheren und eleganteren Weg.

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de