www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Kreise im Koordinatensystem
Kreise im Koordinatensystem < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise im Koordinatensystem: Lage und Mittelpunktbestimmung
Status: (Frage) beantwortet Status 
Datum: 13:30 So 21.10.2007
Autor: Spion4ik

Aufgabe
Seite 25 / Nr. 4

Welche Lage hat der Punkt P bezüglich des Kreises k?

a) P (0|0) ; k: x² + y² + 4x - 6y + 4 = 0

Ich hab jetzt das problem, dass ich nicht wirklich verstehe ob ich die Punkte vom Punkt P irgendwo in die Formel einsetzen muss oder nicht.
Und wie ich jetzt die Lage des punktes bezüglich des Kreises bestimmen kann, bräuchte nur einmal eine Erklärung und Vorrechnung um zu verstehn, dann kann ich auch die restlichen 3 Aufgaben alleine schaffen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 21.10.2007
Autor: leduart

Hallo
Wenn du deine Kreisgleichung (durch quadratische Ergänzung) auf die Form [mm] (x-x_m)^2+(y-y_m)^2=r^2 [/mm] bringst kennst du Mittelpunkt und Radius.
jetz errechnest du den Abstand des Mittelpunktes von P, wenn der kleiner r ist liegt der Punkt inerhalb, größer ausserhalb, gleich auf dem Kreis.
Gruss leduart

Bezug
                
Bezug
Kreise im Koordinatensystem: Und wie?
Status: (Frage) beantwortet Status 
Datum: 13:48 So 21.10.2007
Autor: Spion4ik

Und wie bring ich meine Gleichung in diese Form?
Alles was mit Gleichungen zu tun hat ist für mich nicht zu verstehn ohne Beispiel, mit Buchstaben bringt mir ne Antwort nichts, ich brauche Zahlen um das zu verstehn.

Bezug
                        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 So 21.10.2007
Autor: koepper

Hallo Spion,

[mm] $x^2 [/mm] + [mm] y^2 [/mm] + 4x - 6y + 4 = 0$
[mm] $\Leftrightarrow x^2 [/mm] + 4x + 4 - 4 + [mm] y^2 [/mm] - 6y + 9 - 9 + 4 = 0$   (+4 -4 bzw +9 -9 ist die quadratische Ergänzung)
[mm] $\Leftrightarrow [/mm] (x + [mm] 2)^2 [/mm] - 4 + (y - [mm] 3)^2 [/mm] - 9 + 4 = 0$
[mm] $\Leftrightarrow [/mm] (x + [mm] 2)^2 [/mm] + (y - [mm] 3)^2 [/mm] = 9$

Der Mittelpunkt ist also M(-2 | 3) der Radius $r = [mm] \sqrt{9} [/mm] = 3.$

Berechne nun den Abstand des Mittelpunktes von dem hier in Frage stehenden Punkt (Ursprung).

Wenn der Abstand kleiner als der Radius ist, liegt der Punkt offenbar im Kreis, u.s.w.

war das verständlich?

Gruß
Will

Bezug
                                
Bezug
Kreise im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 So 21.10.2007
Autor: Spion4ik

Ja, danke, dass war jetzt verständlicher und auch eine genauere Antwort auf die eigentliche Frage.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de