www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kreisteilungskörper
Kreisteilungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisteilungskörper: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 06.08.2007
Autor: artic3000

Hallo,

habe mir einige Gedanken zu Kreisteilungskörpern gemacht und mir insbesondere den Zerfällungskörper von [mm] x^{6}-1 [/mm] angeschaut. Dieser hat nach der Euler-Funktion den Grad 2 über Q. Das ist mir auch klar, denn wenn ich das Polynom in die Kreisteilungspolynome zerlege, dann ist eine primitive 6te Einheitswurzel Nullstelle von einem Polynom 2ten Grades. Was ist denn aber nun, wenn ich die zweite 6te Einheitswurzel an Q adjungiere, dann dürfte ich ja nicht den ZErfällungskörper erhalten, weil es sich ja nicht um eine primitive Einheitswurzel handelt. Sie müsste in der Zerlegung von [mm] x^{6}-1 = (x^{2}-x+1)*(x^{2}+x+1)*(x+1)*(x-1) [/mm] Nullstelle des zweiten Polynoms sein, da ja die zwei primitiven Einheitswurzeln Nullstellen des ersten Polynoms (entspricht ja dem 6ten Kreisteilungspolynom) in der Zerlegung sind. Demzufolge müsste dann die Körpererweiterung mit der zweiten 6ten Einheitswurzel (ich nenne ihn K)auch den Grad 2 über Q haben. Wenn ich nun an diesen Körper wieder die dritte Einheitswurzel adjungiere müsste ich ja den Zerfällungskörper L erhalten, und diese Erweiterung müsste über K mindestens den Grad 2 haben, da ja die primitive Einheitswurzel nicht in K liegt. Insgesamt ergibt sich dann nach dem Gradsatz ein Grad von 4 für L über Q. So, jetzt habe ich also einmal den Grad 2 heraus, der ja definitv richtig ist, aber ein anderes Mal 4. Wo ist mein Denkfehler?
Würde mich über eine HIlfe freuen,

VG

Nico

        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 06.08.2007
Autor: felixf

Hallo Nico

> habe mir einige Gedanken zu Kreisteilungskörpern gemacht
> und mir insbesondere den Zerfällungskörper von [mm]x^{6}-1[/mm]
> angeschaut. Dieser hat nach der Euler-Funktion den Grad 2
> über Q. Das ist mir auch klar, denn wenn ich das Polynom in
> die Kreisteilungspolynome zerlege, dann ist eine primitive
> 6te Einheitswurzel Nullstelle von einem Polynom 2ten
> Grades. Was ist denn aber nun, wenn ich die zweite 6te
> Einheitswurzel an Q adjungiere, dann dürfte ich ja nicht
> den ZErfällungskörper erhalten, weil es sich ja nicht um
> eine primitive Einheitswurzel handelt.

Wieso sollte es sich nicht um den Zerfaellungskoerper handeln? Nur weil es das im Allgemeinen nicht ist, muss das nicht gleich in jedem Fall so sein.

> Sie müsste in der
> Zerlegung von [mm]x^{6}-1 = (x^{2}-x+1)*(x^{2}+x+1)*(x+1)*(x-1)[/mm]
> Nullstelle des zweiten Polynoms sein, da ja die zwei
> primitiven Einheitswurzeln Nullstellen des ersten Polynoms
> (entspricht ja dem 6ten Kreisteilungspolynom) in der
> Zerlegung sind. Demzufolge müsste dann die
> Körpererweiterung mit der zweiten 6ten Einheitswurzel (ich
> nenne ihn K)auch den Grad 2 über Q haben.

Genau.

> Wenn ich nun an
> diesen Körper wieder die dritte Einheitswurzel adjungiere

du meinst eine der primitiven sechsten Einheitswurzeln?

> müsste ich ja den Zerfällungskörper L erhalten, und diese
> Erweiterung müsste über K mindestens den Grad 2 haben, da
> ja die primitive Einheitswurzel nicht in K liegt.

Das stimmt nicht: ist naemlich [mm] $\zeta$ [/mm] eine primitive $n$-te Einheitswurzel, $n$ ungerade, so ist [mm] $-\zeta$ [/mm] eine primitive $2n$-te Einheitswurzel. Sobald also ein Koerper eine $n$-te primitive Einheitswurzel enthaelt, $n$ ungerade, so enthaelt er auch eine $2n$-te primitive Einheitswurzel. Was du in diesem Fall sehr gut sehen kannst.

HTH & LG
Felix



Bezug
                
Bezug
Kreisteilungskörper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:26 Di 14.08.2007
Autor: artic3000

Vielen Dank, für deine Hilfe, war ja garnicht so schwer zu verstehen :-)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de