Kreuzprodukt, mengen gleich < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:15 Sa 25.08.2012 | Autor: | Lu- |
Aufgabe | Aufgabe Teil1 : Zwei Vektoren x,y [mm] \in \IR^3 [/mm] sind genau dann linear unabhänig, wenn ihr Kreuzprodukt z:= x [mm] \times [/mm] y verschieden von Null ist.
Aufgabe teil 2: In diesem Fall gilt
[mm] \{ \vektor{u_1 \\ u_2 \\u_3} \in \IR^3 : x_1 u_1 + x_2 u_2 + x_3 u_3 =0
und y_1 u_1 + y_2 u_2 + y_3 u_3 =0 \} [/mm] = [mm] \{ \lambda z : \lambda \in \IR \} [/mm] |
Hallo,
Aufgabe Teil 1 seht als erledigt an
Aufgabe Teil 2
Als Hinweis standen [mm] x^t [/mm] z =0 = [mm] y^t [/mm] z
Dies habe ich auch einfach nachgerechnet.
Ich verstehe nun aber nicht warum mir der Hinweis eine der beiden Inklusionen näherbringt.
Ich würd mich freuen wenn ich licht ins dunkle bringen würdet ;)
Liebe Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:59 Sa 25.08.2012 | Autor: | Marcel |
Hallo,
> Aufgabe Teil1 : Zwei Vektoren x,y [mm]\in \IR^3[/mm] sind genau dann
> linear unabhänig, wenn ihr Kreuzprodukt z:= x [mm]\times[/mm] y
> verschieden von Null ist.
> Aufgabe teil 2: In diesem Fall gilt
> [mm]\{ \vektor{u_1 \\ u_2 \\u_3} \in \IR^3 : x_1 u_1 + x_2 u_2 + x_3 u_3 =0
und y_1 u_1 + y_2 u_2 + y_3 u_3 =0 \}[/mm]
> = [mm]\{ \lambda z : \lambda \in \IR \}[/mm]
> Hallo,
>
> Aufgabe Teil 1 seht als erledigt an
> Aufgabe Teil 2
> Als Hinweis standen [mm]x^t[/mm] z =0 = [mm]y^t[/mm] z
> Dies habe ich auch einfach nachgerechnet.
> Ich verstehe nun aber nicht warum mir der Hinweis eine der
> beiden Inklusionen näherbringt.
>
> Ich würd mich freuen wenn ich licht ins dunkle bringen
> würdet ;)
> Liebe Grüße
1.) Die Aufgabe ist schlecht formuliert. Bei Teil 2 ist ja nicht gemeint, dass
die dortstehende Mengengleichheit gilt, wenn die Äquivalenz aus Teil 1 gilt,
(denn die Äquivalenz aus Teil 1 gilt ja immer, das haben wir bewiesen!)
sondern es ist gemeint, dass, wenn eine der beiden zueinander
äquivalenten Aussagen aus Teil 1 gilt, dann die Mengengleichheit in Teil 2
gilt.
Also: Es sei also $x [mm] \times [/mm] y [mm] \not=0 \in \IR^3\,.$ [/mm] Die Inklusion [mm] $\{\lambda z: \lambda \in \IR\} \subseteq \text{linke Menge}$ [/mm] ist eigentlich klar:
Du weißt sicherlich, dass [mm] $x^t z=y^t [/mm] z=0$ für $z=x [mm] \times [/mm] y$ gilt. Dann folgt natürlich [mm] $x^t (\lambda z)=\lambda*(x^t [/mm] z)=0$ für alle [mm] $\lambda\,,$ [/mm] analog...
Nun ist noch [mm] $\text{linke Menge}=\{u \in \IR^3: u^tx=0 \wedge u^t y=0\} \subseteq \{\lambda z: \lambda \in \IR\}$ [/mm] nachzurechnen.
Nimm' ein [mm] $u\,$ [/mm] aus der linken Menge her, o.E. [mm] $u\,$ [/mm] nicht die Null des
[mm] $\IR^3$. [/mm] Dann ist [mm] $x^t u=y^tu=0\,.$ [/mm]
Weiter kann man [mm] $u\,$ [/mm] schreiben als
$$u=r*x+s*y+t*z$$
mit $r,s,t [mm] \in \IR\,,$ [/mm] weil $x,y,z$ eine Basis des [mm] $\IR^3$ [/mm] bilden. Wegen $x^tu=x^tz=0$ und [mm] $\|x\|^2=x^tx$ [/mm] folgt dann durch berechnen von [mm] $x^tu=x^t(r*x+s*y+t*z)$ [/mm] unter Verwendung der Linearität des Skalarproduktes
[mm] $$0=r*\|x\|^2+s*x^ty\,.$$
[/mm]
Analog (beachte $x^ty=y^tx$ - Symmetrie des Skalarprodukts)
[mm] $$y^tu=0=r*x^ty+s*\|y\|^2\,.$$
[/mm]
Wegen $x [mm] \not=0$ [/mm] kann man [mm] $r=-s*x^ty/\|x\|^2$ [/mm] in letztstehende
Gleichung einsetzen
[mm] $$-s(x^ty)^2/\|x\|^2+s\|y\|^2=0\,.$$
[/mm]
Wäre $s [mm] \not=0\,,$ [/mm] so stünde in der CSU Gleichheit und damit wären
[mm] $x,y\,$ [/mm] linear abhängig. Also ist [mm] $s=0\,.$ [/mm] Analoge Überlegungen zeigen
[mm] $r=0\,.$
[/mm]
Fazit:
Wir gingen aus von
[mm] $$u=r*x+s*y+t*z\,.$$
[/mm]
Was folgt damit nun?
Gruß,
Marcel
|
|
|
|