www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Krümmung
Krümmung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Sa 08.01.2011
Autor: Kuriger

berechnen Sie die maximale Krümmung der Kurve y = ln(x), x > 0


Die allgemeine Krpmmungsformel lautet

Krümmung  = [mm] \bruch{f''(t)}{(1 + f'(t)^2)^{3/2}} [/mm]


Also:
f(x) = ln(x)
f'(x) = [mm] \bruch{1}{x} [/mm]
f''(x) = [mm] -\bruch{1}{x^2} [/mm]

Eingesetzt
Krümmung = [mm] \bruch{-\bruch{1}{x^2}}{(1+(\bruch{1}{x})^2)^{3/2}} [/mm]

Nun versuche ich das ganze etwas umzuformen

Krümmung = - [mm] \bruch{\bruch{1}{x}}{(\bruch{x^2 + 1}{x^2})^{3/2}} [/mm] = - [mm] (\bruch{\bruch{1}{x^{4/3}}}{\bruch{x^2 + 1}{x^2}})^{3/2} [/mm] = - [mm] (\bruch{x^2}{x^{4/3 * (x^2 + 1)}})^{3/2} [/mm] = [mm] \bruch{x}{(x^2 + 1)^{3/2}} [/mm]

Nun kann ich mit der Krümmungsableitung die Extremalstellen bestimmen. Hier ist die Produkteregel wohl geeignet

Krümmung' = [mm] \bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}} [/mm]

Nun setze ich das mal Null
0 = [mm] \bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}} [/mm]
0 = [mm] (x^2 [/mm] + [mm] 1)^{3/2} [/mm] - [mm] \bruch{3}{2}x [/mm] * [mm] (x^2 [/mm] + [mm] 1)^{1/2} [/mm]
0 = [mm] (x^2 [/mm] + [mm] 1)^{1/2} [/mm] * [mm] ((x^2 [/mm] + 1) - [mm] \bruch{3}{2}x) [/mm]
Nun einer der komponenten Null geben
0 = [mm] (x^2 [/mm] + [mm] 1)^{1/2} \to [/mm] Das wird wohl nie NUll
0 = [mm] ((x^2 [/mm] + 1) - [mm] \bruch{3}{2}x) \to [/mm] Diese quadratische Gleichung scheint keien Lösung zu haben

Was mache ich falsch?

Danke, Gruss Kuriger

        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Sa 08.01.2011
Autor: MathePower

Hallo Kuriger,

> berechnen Sie die maximale Krümmung der Kurve y = ln(x), x
> > 0
>  
>
> Die allgemeine Krpmmungsformel lautet
>  
> Krümmung  = [mm]\bruch{f''(t)}{(1 + f'(t)^2)^{3/2}}[/mm]
>  
>
> Also:
>  f(x) = ln(x)
>  f'(x) = [mm]\bruch{1}{x}[/mm]
>  f''(x) = [mm]-\bruch{1}{x^2}[/mm]
>  
> Eingesetzt
>  Krümmung =
> [mm]\bruch{-\bruch{1}{x^2}}{(1+(\bruch{1}{x})^2)^{3/2}}[/mm]
>  
> Nun versuche ich das ganze etwas umzuformen
>  
> Krümmung = - [mm]\bruch{\bruch{1}{x}}{(\bruch{x^2 + 1}{x^2})^{3/2}}[/mm]
> = - [mm](\bruch{\bruch{1}{x^{4/3}}}{\bruch{x^2 + 1}{x^2}})^{3/2}[/mm]
> = - [mm](\bruch{x^2}{x^{4/3 * (x^2 + 1)}})^{3/2}[/mm] =
> [mm]\bruch{x}{(x^2 + 1)^{3/2}}[/mm]



[ok]


>  
> Nun kann ich mit der Krümmungsableitung die
> Extremalstellen bestimmen. Hier ist die Produkteregel wohl
> geeignet
>  
> Krümmung' = [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}}[/mm]


Hier haben sich einige Fehler eingeschlichen:

[mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}*\red{\left(x^{2}+1\right)'}}{\blue{\left( \ (x^2 + 1)^{3/2}\right)^{2}}}[/mm]


>  
> Nun setze ich das mal Null
>  0 = [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}}[/mm]
>  
> 0 = [mm](x^2[/mm] + [mm]1)^{3/2}[/mm] - [mm]\bruch{3}{2}x[/mm] * [mm](x^2[/mm] + [mm]1)^{1/2}[/mm]
>  0 = [mm](x^2[/mm] + [mm]1)^{1/2}[/mm] * [mm]((x^2[/mm] + 1) - [mm]\bruch{3}{2}x)[/mm]
>  Nun einer der komponenten Null geben
>  0 = [mm](x^2[/mm] + [mm]1)^{1/2} \to[/mm] Das wird wohl nie NUll
>  0 = [mm]((x^2[/mm] + 1) - [mm]\bruch{3}{2}x) \to[/mm] Diese quadratische
> Gleichung scheint keien Lösung zu haben
>  
> Was mache ich falsch?


Siehe oben.


>  
> Danke, Gruss Kuriger


Gruss
MathePower

Bezug
                
Bezug
Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 So 09.01.2011
Autor: Kuriger

Hallo


Den rote Ausdruck verstehe ich nicht ganz:

> [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}*\red{\left(x^{2}+1\right)'}}{\blue{\left( \ (x^2 + 1)^{3/2}\right)^{2}}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



oder du meinst:
\red{\left(x^{2}+1\right)' = 2x ?

Gruss Kuriger



Bezug
                        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 So 09.01.2011
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
>
> Den rote Ausdruck verstehe ich nicht ganz:
>  
> > [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}*\red{\left(x^{2}+1\right)'}}{\blue{\left( \ (x^2 + 1)^{3/2}\right)^{2}}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler:

> "{" und "}" müssen immer paarweise auftreten, es wurde
> aber ein Teil ohne Entsprechung gefunden (siehe rote
> Markierung)
>  
>
>
> oder du meinst:
>  \red{\left(x^{2}+1\right)' = 2x ?


Genau.


>  
> Gruss Kuriger
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de