www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Krümmung
Krümmung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung: aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 18.05.2013
Autor: hannesmathe

Aufgabe
bestimmen sie die krümmung Kxy(t) von
[mm] \vektor{x(t) \\ y(t)} =\vektor{2(e^{t}+e^{-t}) \\ e^{t}-e^{-t}} [/mm]
für t=0

ich habe die ersten beiden ableitung von beiden Parameter funktionen genommen und für t=0 jeweils null als antwort bekommen. und somit die krümmung auch gleich 0 angenommen... kann das angehen? kann mir die kurve nur schwer vorstellen, das macht das verständnis nicht einfacher...
über hinweise wenn das flasch sit würde ich mich sehr freuen!
schönen Gruß!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Sa 18.05.2013
Autor: notinX

Hallo,

> bestimmen sie die krümmung Kxy(t) von
>  [mm]\vektor{x(t) \\ y(t)} =\vektor{2(e^{t}+e^{-t}) \\ e^{t}-e^{-t}}[/mm]
>  
> für t=0
>  ich habe die ersten beiden ableitung von beiden Parameter
> funktionen genommen und für t=0 jeweils null als antwort
> bekommen. und somit die krümmung auch gleich 0
> angenommen... kann das angehen? kann mir die kurve nur

nein, beides falsch.

> schwer vorstellen, das macht das verständnis nicht
> einfacher...

Ich kann mir die Kurve auch nicht vorstellen, aber das ist zum Berechnen der Krümmung auch gar nicht nötig.

>  über hinweise wenn das flasch sit würde ich mich sehr
> freuen!
>  schönen Gruß!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß,

notinX

Bezug
                
Bezug
Krümmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Sa 18.05.2013
Autor: M.Rex

Hallo notinX

Für y''(0) erhalte ich aber auch den Wert 0, sofern ich mich nicht fürchterlich vertan habe.

Marius

Bezug
                        
Bezug
Krümmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Sa 18.05.2013
Autor: notinX

Hallo Marius,

> Hallo notinX
>  
> Für y''(0) erhalte ich aber auch den Wert 0, sofern ich
> mich nicht fürchterlich vertan habe.

ja, das stimmt. Ich meinte die Aussage 'beide Funktionen sind =0 für t=0' ist falsch ;-)

>  
> Marius

Gruß,

notinX

Bezug
                
Bezug
Krümmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Sa 18.05.2013
Autor: hannesmathe

tja da war ich beim ableiten etwas zu vorschnell.
ich kirege jetzt für die Ableitungen
x'=0 und x''=4
y'=2 und y''=0
und komme so auf K=1
danke für jeglich hinweise!
besten Gruß!

Bezug
                        
Bezug
Krümmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Sa 18.05.2013
Autor: notinX


> tja da war ich beim ableiten etwas zu vorschnell.
>  ich kirege jetzt für die Ableitungen
>   x'=0 und x''=4
>   y'=2 und y''=0

Sofern Du damit die Ableitungen an der Stelle t=0 meinst stimmt das.

>  und komme so auf K=1

Das stimmt nicht.

>  danke für jeglich hinweise!
>  besten Gruß!

Gruß,

notinX

Bezug
                                
Bezug
Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Sa 18.05.2013
Autor: hannesmathe

mal wieder ein minus vertauscht, liege ich mit K=-1 besser?

Bezug
                                        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Sa 18.05.2013
Autor: notinX


> mal wieder ein minus vertauscht, liege ich mit K=-1 besser?

Ja.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de