www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Kruemmung einer Kurve
Kruemmung einer Kurve < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kruemmung einer Kurve: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:22 Do 10.02.2005
Autor: tulamdian

Ich habe ein Crossposting unter: http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=32421
erstellt...



Heya Forum, ich hoffe ich bin im Richtigen Forum geladen, die Frage ist naemlich irgendwie ein Mix....

Ich moechte die Kruemmung einer Kurve berechnen. Diese Kurve stammt aus einer Grafikdatei und ich habe nur die XY Koordinaten der Punkte entlang der Kurve zur Verfuegung.
Ich verwende drei Punke A,B,C die alle auf der Kurve liegen...

Ich habe zwei Verschiede Ansaetze ausprobiert, die alle fehlgeschlagen sind.


Ansatz A:

Berechnung der Kruemmung K mit Hilfe der Formel


K=  [mm] \bruch{y''(x)}{(1+y'(x)^2)^\bruch{3}{2}} [/mm]

Ich habe folgende Naeherungen verwendet
y'(x)=  [mm] \bruch{By-Ax}{Bx-Ax} [/mm]

[mm] y"(x)=\bruch{\bruch{Cy-By}{Cx-Bx}-\bruch{By-Ay}{Bx-Ax}}{\bruch{Cx+Bx}{2}-\bruch{Bx+Ax}{2}} [/mm]

Das klappt auch Theoretisch ganz gut, jedoch habe ich das Problem, dass wenn ich einen Kreis berechne das Ergebniss der Kruemmung von Konvex auf Konkav schwenkt sobald ich mit der Berechnung im dritten Quadranten angekommen bin...

Ich habe auch versucht ueber die Geradengleichung zu einer Loesung zu kommen.

Zuerst berechne ich den Winkel zwischen den Ortsvektoren A und C. (Klappt prima und die  Kruemmung der Kurve wird gut wiedergegeben. Jedoch wird Konkav/Konvex nicht beachtet

Hierzu wollte ich die Geradengleichung verwenden...

Ich habe die Geradengleichung fuer eine Gerade AB berechnet und dann Punkt C eingesetzt. Ist das Ergebniss >0 liegt der Punkt unter der Geraden ist es Groesser liegt der Punkt ueber der Geraden. => aehnliches Problem, wenn die Gerade AB im ersten Quadranten liegt und Punkt C unter der Geraden liegt bekomme ich ein anderes Erbebiss als wenn AB im dritten Quadranten liegt. Im ersten Fall bekomme ich das Ergebniss, der Punkt liegt unter der geraden und somit liegt eine Linkruemmung vor (ich gehe den Kreis entgegen des Uhrzeigersinns) Im zweiten Fall bekomme ich das Ergebniss C liegt ueber der Geraden es liegt ebenfalls eine Linkskruemmung vor...

Ich habe jetzt noch eine Komplizierte IF Abfrage konstruiert um herauszufinden welcher Fall gerade vorliegt, aber das klappt auch nicht. Entweder habe ich mir verprogrammiert oder es liegt an etwas anderem. Ich habe das Gefuehl ich vergallopiere mich gerade ganz gewaltig und wollte mal von euch eine Meinung zu meinem Problem anhoeren. Vielleicht ist es ja viel einfacher zu loesen..


        
Bezug
Kruemmung einer Kurve: zu wenig Punkte?
Status: (Antwort) fertig Status 
Datum: 17:18 Do 10.02.2005
Autor: leduart

Hallo tulamdian
Ganz versteh ich dein Problem nicht mit konkav und konvex! Wenn du einen Kreis um den Nullpkt anguckst hat er im 1. und 3. Quadranten 2 parallele Tangenten, die Radien stehen senkrecht darauf, liegen aber auf entgegengesetzten Seiten der Tangenten. Was ist jetzt konkav, was konvex? Sieht man aus pos y- Richtung runter auf den Kreis ist er im 1. und 2. Quadranten konvex, im 3. und 4. konkav; das kann man beliebig variieren. Nur wenn man eine parametrisierte Kurve in einer Richtung durchläuft, kann man sagen ob die Kurve nach rechts oder links gekrümmt ist.
2. Problem. Wenn du nur 3 Punkte nimmst, warum dann nicht einfach entweder einen Kreis durchlegen,dessenRadius und Mittelpkt du berechnen kannst, oder eine Parabel, deren Krümmung ja bekannt ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de