www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Krümmungsverhalten von Stammf.
Krümmungsverhalten von Stammf. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmungsverhalten von Stammf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 05.05.2008
Autor: Kathaaa

Aufgabe
Gegeben ist die in R definierte Funktion f mit
f(x)= 10{e^(-x/2) - e^(-x) }

Nun wird die in R definierte Integralfunktion Fa: [mm] \integral_{a}^{x}{f(t) dt} [/mm] betrachtet, der Graph von fa wird mit Ga bezeichnet.
Bestimmen Sie das Monotonie- und das Krümmungsverhalten von Ga ohne Ausführung der Integration (kurze Begründung).

Also ich hab den Graph von f vor mir. Der kommt im dritten Quadranten von minus unendlich, hat seine einzige Nullstelle in (0|0), und geht dann streng monoton steigend im ersten Quadranten weiter, hat sein Maximum bei (2ln2|2,5) und fällt dann streng monoton und nähert sich in plus unendlich der x-Achse an, sprich lim gegen + unendlich = 0 .
Monotonie verhalten von Ga ist klar ( streng monoton fallend, von minus unendlich bis 0, ab dann streng monoton steigend) ich kann mir den Graph ca. vorstellen, also wo er steigt und wo er fällt.  
Aber ich weiß nich wie er fällt/steigt, also ob er nun so --> ) fällt/steigt, oder ( <-- so. ist das verständlich? Daher versteh ich auch nich, wie Ga gekrümmt ist (ohne Rechnung). Kann mir das jemand erläutern?  
Vielen Danke :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Krümmungsverhalten von Stammf.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 05.05.2008
Autor: leduart

Hallo Katha
Du betrachtest offensichtlich f, nicht [mm] F_a, [/mm] die Integralfunktion.
dass du f so genau kennst ist aber gut, denn eigentlich willst du ja [mm] F_a [/mm] kennen.
Jetz solltest du dich erinnern, dass f(x) die Ableitung von [mm] F_a(x) [/mm] ist. d.h. wo f>0 steigt [mm] F_a [/mm] , wo f=0 hat F einen extremwert, wo f nen Extremwert hat, hat F nen Wendepunkt. (das sind schon deine kurzen Begründungen!)
Du sollst ja nur nicht integrieren, f ableiten darfst du, dann siehst du an F''=f' die Krümmung!
Gruss leduart



Bezug
                
Bezug
Krümmungsverhalten von Stammf.: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Mo 05.05.2008
Autor: Kathaaa

vielen dank, also muss ich f ableiten und erkenns daher.. man man, da hätte ich auch drauf kommen können. :) dankeschöön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de