www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Krypto,Kodierungstheorie,Computeralgebra" - Kryptographie
Kryptographie < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kryptographie: Diffie-Hellman-Schlüsseltausch
Status: (Frage) beantwortet Status 
Datum: 22:04 Sa 18.02.2006
Autor: DAB268

Aufgabe
Für einen Diffie-Hellman-Schlüsselaustausch vereinbaren Alice und Bob: [mm] $f(x)=2^{x}x\mod [/mm] 13$.
a) Welche anderen Funktionen $f (x) = [mm] a^{x}x \mod [/mm] 13$ mit [mm] $a\in [/mm] Z_13^*$
hätten Sie auch nehmen können?
b) Alice wählt für sich geheim A = 5 und Bob wählt für sich geheim B = 8. Berechnen Sie den
gemeinsamen Schlüssel k.
c) Nach erfolgter Vereinbarung derselben Einwegfunktion sendet Alice [mm] $\alpha [/mm] = 3$ an Bob, und Bob
sendet [mm] $\beta [/mm] = 7$ an Alice. Bestimmen Sie den gemeinsamen Schlüssel k.

Hallo.
Eigentlich interessiert mich nur die Lösung zur Aufgabe c). Wäre schön, wenn mir die einer geben könnte. Ich komm einfach nciht drauf, wie ich die Zahlen A und B wieder herleite.

Hier noch das Vorgehen des Schlüsseltauschs:

Diffie-Hellman-Schlüsseltausch:

0.Alice und Bob einigen sich öffentlich: Auf eine Primzahl p als Modul, z.B. $p = 11$ und eine Einwegfunktion mod p, z.B. [mm] $f(x)=a^x$ [/mm] mit $a [mm] \in Z_p^*$ [/mm] (hier $a=7$)

1.Alice und Bob wählen jeder für sich geheim je eine Restklasse [mm] $\neq [/mm] 0 [mm] \mod [/mm] p$: Alice eine Restklasse A, z.B. A = 3 ; Bob eine Restklasse B, z.B. B = 6

2.Alice und Bob setzen ihre jeweilige Geheimzahl in die Einwegfunktion ein: Alice berechnet: [mm] $\alpha [/mm] = [mm] 7^A [/mm] = [mm] 7^3 [/mm] = 2 [mm] \mod [/mm] 11$ ; Bob berechnet: [mm] $\beta [/mm] = [mm] 7^B [/mm] = 76 = 4 [mm] \mod [/mm] 11$

3.Alice schickt ihr Ergebnis [mm] $\alpha [/mm] = 2$ an Bob und Bob sein Ergebnis [mm] $\beta [/mm] = 4$ an Alice.

4. Alice und Bob potenzieren jeweils das Ergebnis des anderen mit der eigenen Geheimzahl: Alice rechnet: [mm] $\beta^{A}= 4^3 [/mm] = 9 [mm] \mod [/mm] 11$ ; Bob rechnet: [mm] $\alpha^{B} [/mm] = [mm] 2^6 [/mm] = 9 [mm] \mod [/mm] 11$. Beide erhalten so dieselbe Zahl k = 9 und können diese dann als Schlüssel für ein symmetrisches Kryptosystem verwenden.

        
Bezug
Kryptographie: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Di 21.02.2006
Autor: mathiash

Hallo und guten Morgen,

also bei dieserlei Fragen merke ich, dass ich meine Kryptographie-Kenntnisse unbedingt mal erweitern sollte.

Aber hier ist es doch nach dem, was Du geschrieben hast, so, dass es gar nicht darum geht, A und B zu rekonstruieren, sondern einfach darum, dass Alice und Bob irgendwie sich auf einen Schluessel k einigen, ohne k direkt ueber das
Netz zu kommunizieren, und Du hast ja exemplarisch beschrieben, wie das geht.

Also meiner Ansicht nach hast Du selber damit (c) schon komplett geloest.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de