www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kürzeste Entfernung
Kürzeste Entfernung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kürzeste Entfernung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Sa 28.04.2007
Autor: warumauchimmer

Aufgabe
berechne die kürzeste Entfernung des Punktes (4,2) zur Kurve [mm] y^2 [/mm] = 8x

Hallo,

also ich vermute das die Funktion y = [mm] \wurzel{8x} [/mm] lautet. Nur habe ich nicht so richtig Ahnung wie ich nun den Wert errechne. Mein Ansatz wäre es per Interpolation zu versuchen, nur habe ich keine Ansatz wie ich eben die kürzeste Entfernung herausfinden kann.

Wäre dankbar für jeden Rat und jeden Lösungsansatz...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kürzeste Entfernung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 28.04.2007
Autor: Hund

Hallo,

zunächst musst du + und - [mm] \wurzel{8x} [/mm] berücksichtigen, wenn die Aufgabe so gestellt worden ist. Du kannst aber beide Funktionen betrachten und dann einfach das Minimum der beiden kürzesten Entfernungen nehmen.

Also, [mm] f(x)=\wurzel{8x}. [/mm] So jetzt müssen wir den kürzesten Abstand zwischen f und dem Punkt (4,2) finden. Dazu schreiben wir auf, was überhaupt der Abstand zwischen f und (4,2) ist:

[mm] d((x,f(x));(4,2))=\wurzel{(x-4)²+(\wurzel{8x}-2)²} [/mm] nach dem Satz des Pythagoras. Es ist nach dem x gefragt, wo d ein Minimum annimmt, also brauchst du nur noch die Extremalstellen berechnen usw. . Den Rest kennst du ja.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Kürzeste Entfernung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Sa 28.04.2007
Autor: Steffi21

Hallo Hund,

hast du nicht eine Wurzel vergessen:

[mm] \wurzel{(x-4)^{2}+(\wurzel{8x}-2)^{2}} [/mm]

Steffi

Bezug
                        
Bezug
Kürzeste Entfernung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Sa 28.04.2007
Autor: Hund

Hallo,

danke für den Hinweis. Habs überarbeitet.

Gruß
Hund

Bezug
                
Bezug
Kürzeste Entfernung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 30.04.2007
Autor: warumauchimmer

Erstmal danke für die Antwort. Ich gebe aber zu das ich mir nicht sicher bin ob ich es verstanden habe. Raus bekommen habe ich diese Formel [mm] x^{2} [/mm] - 4 * [mm] \wurzel{8x} [/mm] + 12.

Da bekomme ich aber nur Unsinn raus...

Was habe ich falsch gemacht? Oder, habe ich was missverstanden...?

Bezug
                        
Bezug
Kürzeste Entfernung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mo 30.04.2007
Autor: Steffi21

Hallo,

du hast einen Fehler bei den binomischen Formeln gemacht, wir waren bei:

[mm] d((x,f(x));(4,2))=\wurzel{(x-4)²+(\wurzel{8x}-2)²} [/mm] angekommen,

[mm] d((x,f(x));(4,2))=\wurzel{x^{2}-8x+16+8x-4\wurzel{8x}+4} [/mm]

[mm] d((x,f(x));(4,2))=\wurzel{x^{2}-4\wurzel{8x}+20} [/mm]

jetzt Ableitung bilden, dann gleich Null setzen, klappt es jetzt?

Steffi




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de