www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Kürzungsregel
Kürzungsregel < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kürzungsregel: Beweis
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 07.06.2012
Autor: umbras

Aufgabe
Man zeige, dass für alle a, b, c aus [mm] \IN [/mm] gilt:

[mm] a^{b}=c^b \Rightarrow [/mm] a = c

Wie beweise ich das? Geht das mit vollständiger Induktion? Kann man mit vollständiger Induktion nicht nur Gleichungen beweisen?

P.S. Ja, eigentlich ist es ein Gegenbeweis.





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kürzungsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Do 07.06.2012
Autor: kamaleonti

Hallo,
> Man zeige, dass für alle a, b, c aus [mm]\IN[/mm] gilt:
>  
> [mm]a^{b}=c^b \Rightarrow[/mm] a = c
>  Wie beweise ich das? Geht das mit vollständiger
> Induktion? Kann man mit vollständiger Induktion nicht nur
> Gleichungen beweisen?

Was darfst du für den Beweis verwenden?

Für [mm] b\in\IN [/mm] und x>0 ist z.B. die Funktion [mm] f(x)=x^b [/mm] injektiv.
Damit folgt aus f(a)=f(c) die Gültigkeit von a=c.

LG

>
> P.S. Ja, eigentlich ist es ein Gegenbeweis.
>  
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Kürzungsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Do 07.06.2012
Autor: umbras

Ich weiß nicht, was das heißt, was du geschrieben hast.^^

Ähm, Definitionen von Addition, Multiplikation und Exponentation. Und Assoziativ-, Distributiv- und Kommutativgesetz.

Bezug
                        
Bezug
Kürzungsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Do 07.06.2012
Autor: reverend

Hallo umbras,

> Ich weiß nicht, was das heißt, was du geschrieben
> hast.^^

Schade. kamaleontis Weg ist der einfachste.

> Ähm, Definitionen von Addition, Multiplikation und
> Exponentation. Und Assoziativ-, Distributiv- und
> Kommutativgesetz.

Das ist nicht viel. Dann versuch mal, c=a+d zu setzen und dann zu zeigen, dass d=0 sein muss. Dazu brauchst Du die binomischen Regeln (samt Binomialkoeffizienten) eigentlich nicht.

Grüße
reverend


Bezug
                        
Bezug
Kürzungsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Fr 08.06.2012
Autor: Helbig

Hattet ihr in der Vorlesung schon die Kürzungsregel für die Multiplikation oder die Addition natürlicher Zahlen bewiesen? Also z. B.:

$a*c=b*c [mm] \Rightarrow [/mm] a=b$ für alle natürlichen Zahlen [mm] $a,\,b,\,c$? [/mm]

(Dies gilt nur, wenn die natürlichen Zahlen mit $1$ anfangen, für $c=0$ gilt das nicht).

Der Beweis für die Exponentiation wäre sehr ähnlich. Im Induktionsbeweis über $c$ müßtest Du im Induktionsanfang zeigen:

Aus [mm] $a^1=b^1$ [/mm] folgt $a=b$. Dabei benutzt Du die rekursive Definition der Exponentiation.

Im Induktionsschritt mußt Du zeigen:

Aus [mm] $a^{c+1}=b^{c+1}$ [/mm] folgt $a=b$. Auch hier benutzt Du die rekursive Definition der Exponentiation und die Kürzungsregel für die Multiplikation.

Viel Erfolg,
Wolfgang


Bezug
        
Bezug
Kürzungsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:42 Fr 08.06.2012
Autor: fred97

Wie wärs damit:

Zeige mit Induktion nach n:

aus a<c folgt [mm] a^n
FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de