www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Kürzungsregel beweisen
Kürzungsregel beweisen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kürzungsregel beweisen: indirekter Beweis
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 06.05.2009
Autor: Lockenheld

Aufgabe
[Dateianhang nicht öffentlich]

Was versteht man denn genau unter dem indirekten Beweis? Den Beweis durch Widerspruch oder den Beweis durch Kontraposition? Ich bin mal von letzterem ausgegangen. Dabei gilt ja -B --> -A (aus nicht B folgt nicht A). Das heißt doch dann für die Kürzungsregel:
a>b --> a+c>b+c
Hab ich das richtig verstanden?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kürzungsregel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mi 06.05.2009
Autor: pelzig


> Was versteht man denn genau unter dem indirekten Beweis?
> Den Beweis durch Widerspruch oder den Beweis durch
> Kontraposition?

Meiner Erfahrung nach wird beides als indirekter Beweis bezeichnet.

> Ich bin mal von letzterem ausgegangen.
> Dabei gilt ja -B --> -A (aus nicht B folgt nicht A). Das
> heißt doch dann für die Kürzungsregel:
>  a>b --> a+c>b+c

>  Hab ich das richtig verstanden?

Fast, das heißt für die Kürzungsregel: [mm] $a\ge b\Rightarrow a+c\ge [/mm] b+c$.

Gruß, Robert

Bezug
                
Bezug
Kürzungsregel beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Mi 06.05.2009
Autor: Lockenheld

Stimmt, das hatte ich vergessen.
Wie gehe ich denn nun weiter vor, denn meine Implikation stimmt ja nun.
$ [mm] a\ge b\Rightarrow a+c\ge [/mm] b+c $
Wenn a größer als b ist, dann ist auch die Summe von a und einer natürlichen Zahl c größer als die Summer von b und der natürlichen Zahl c.
$ [mm] 3\ge 2\Rightarrow 3+1\ge [/mm] 2+1 $
Wie gehe ich denn nun dran, das allgemein zu beweisen?

Bezug
                        
Bezug
Kürzungsregel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mi 06.05.2009
Autor: leduart

Hallo
Ich denke dass "indirekter Beweis" hier und praktisch immer beweis durch widerspruch meint. denn deine Kontraposition ist ja eigentlich nichts anderes als die beh. die du beweisen sollst.
d.h. wenn kontrapos, dann die durch Widerspruch, also lieber gleich.
Gruss leduart

Bezug
                                
Bezug
Kürzungsregel beweisen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:44 Mi 06.05.2009
Autor: Lockenheld

Also müsste ich deiner Meinung nach von den Fall, dass A gilt und B nicht gilt ausgehen. Somit dann folgendes beweisen:
a+c < b+c [mm] \Rightarrow [/mm] a [mm] \ge [/mm] b
Wie kann ich das noch allgemein beweisen? Reicht es wenn ich sage, dass a nie [mm] \ge [/mm] b sein kann?

Bezug
                                        
Bezug
Kürzungsregel beweisen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Fr 08.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de