www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Kugel
Kugel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugel: Punkte finden
Status: (Frage) beantwortet Status 
Datum: 18:23 Di 28.05.2013
Autor: SamGreen

Aufgabe
Gib vier Punkte an, die auf der Kugel mit Durchmesser AB liegen.
A (6 / 5 / 2) und B (-2 / -3 / 0)  


 


<br>

        
Bezug
Kugel: Punkte finden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Di 28.05.2013
Autor: SamGreen

Vielleicht kann mir wer helfen - ich habe zwar schon die Kugelgleichung, aber wie kann ich jetzt Punkte finden?

Kugel k: (x – 2)² + (y – 1)² + (z – 1)² = 33

Bezug
        
Bezug
Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Di 28.05.2013
Autor: chrisno

Ich habe Deine Kugelgleichung nicht nachgerechnet. Du kannst selbst eine Probe durchführen:
Setze A und auch B ein.
Ganz ähnlich kommst Du an die gesuchten Punkte. Wähle jeweils einen Wert für x und y. Dazu musst Du ein bisschen nachdenken. Zum Beispiel sind Werten zwischen denen von A und B ganz geeignet. Dann musst Du die Kugelgleichung nach z auflösen und hast damit auch die dritte Koordinate.

Bezug
        
Bezug
Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Mi 29.05.2013
Autor: glie

Hallo,

die von dir angegebene Kugelgleichung ist korrekt!

Jetzt muss dir halt so eine Kugelgleichung auch etwas sagen, dann ist das auch kein Problem, Punkte zu finden die auf der Kugel liegen.

Die Kugelgleichung sagt dir halt genau die Eigenschaft, die ALLE Punkte der Kugel gemeinsam haben, nämlich:

Wenn man von der x-Koordinate 2 subtrahiert und das Ergebnis dann quadriert, dann von der y-Koordinate 1 subtrahiert und das Ergebnis wieder quadriert, dann von der z-Koordinate 1 subtrahiert und das dann wieder quadriert und die drei Quadrate dann zusammenzählt, dann kommt da immer 33 raus!

Um jetzt Punkte auf der Kugel zu finden, würde ich mir überlegen, wie man mit der Summe von drei Quadratzahlen auf 33 kommen kann.

Da fallen mir so ganz spontan 1+16+16 oder 16+16+1 oder 16+1+16 oder 25+4+4 oder 4+25+4 oder 4+4+25 ein.

Damit alleine erhältst du ja schon einige Punkte auf der Kugel. Ohne jetzt groß irgendwie rumzurechnen.

Für die erste Kombination 1+16+16 mal vorgemacht:

[mm] $\underbrace{(3-2)^2}_{1}+\underbrace{(5-1)^2}_{16}+\underbrace{(5-1)^2}_{16}=33$ [/mm]

Also liegt der Punkt $(3|5|5)$ auf der Kugel.


Gruß glie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de