www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Kugel im Würfel ?
Kugel im Würfel ? < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugel im Würfel ?: Wichtige Frage!
Status: (Frage) beantwortet Status 
Datum: 17:40 Mi 01.12.2004
Autor: Kritiker

Hi Leute !
Wer kann mir weiterhelfen bei folgender Problematik!
Ich komm einfach auf keinen Ansatz.
Also:
Der Körper in Figur 193.2 ist aus einem Würfel durch Abschneiden einer Ecke entstanden.
Welches ist die Kugel mit dem größten Radius, die in diesen Körper hineinpaßt, wenn ihr Mittelpunkt auf der von A ausgehenden Raumdiagonale des Würfels liegen soll?

Ich hab das Bild dieses Körpers als Datei angehangen.
Vielen Dank im Voraus.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kugel im Würfel ?: Lösungsideen
Status: (Antwort) fertig Status 
Datum: 21:08 Mi 01.12.2004
Autor: informix

Hallo Kritiker,
> Hi Leute !
>  Wer kann mir weiterhelfen bei folgender Problematik!
>  Ich komm einfach auf keinen Ansatz.
>  Also:
>  Der Körper in Figur 193.2 ist aus einem Würfel durch
> Abschneiden einer Ecke entstanden.
> Welches ist die Kugel mit dem größten Radius, die in diesen
> Körper hineinpaßt, wenn ihr Mittelpunkt auf der von A
> ausgehenden Raumdiagonale des Würfels liegen soll?
>  
> Ich hab das Bild dieses Körpers als Datei angehangen.
>  Vielen Dank im Voraus.
>  

Leg' den Würfel mal in ein Koordinatensystem, so dass A im Ursprung liegt, [mm] $\vec{AB}$ [/mm] in Richtung der x-Achse, ... und benenne die oberen Eckpunkte des Würfels E (über A), G (über C), H (über D).
Dann liegt der gesuchte Mittelpunkt auf der Strecke [mm] $\overline [/mm] {AG}$.
Die Zeichnung scheint aber etwas anderes auszusagen?! [verwirrt]
Schade, dass du uns nicht verrätst, aus welchem Schulbuch die Zeichnung stammt.
Die Kugel liegt nun so, dass sie die senkrechten Würfelseiten und/oder die abgeschnittene Fläche als Tangentialebene besitzt.

Reicht das mal an Überlegungen?
Setze sie hier fort, damit wir zusammen weiter überlegen können.


Bezug
                
Bezug
Kugel im Würfel ?: sorry
Status: (Frage) beantwortet Status 
Datum: 21:57 Mi 01.12.2004
Autor: Kritiker

Erst mal danke für die schnelle Antwort informix!

Sorry, ich hab vergessen zu sagen das das Bild nur ein Beispiel darstellt und die Raumdiagonale eigentlich von Punkt A aus gehen müßte.
Hier wird sie allerdings von Punkt B aus dargestellt.

Leider komme ich mit deinen guten Tipps immer noch nicht viel weiter.#
P.S.: Die Aufgabe ist aus: "Klett - Lambacher Schweitzer - Analytische    Geometrie LK" !


Bezug
                        
Bezug
Kugel im Würfel ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mi 01.12.2004
Autor: Bastiane

Hallo Kritiker!
Wo genau hakt es denn? Ich glaube, diese Aufgabe hier komplett vorzurechnen ist sehr umständlich, und verstehen würdest du es dann auch nicht unbedingt. Versuch doch mal den ersten Schritt, den informix dir vorschlägt, und wenn du dazu dann eine konkrete Frage hast, dann stelle sie. Ich glaube, dann können wir dir besser helfen.
Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Kugel im Würfel ?: Ansatz
Status: (Frage) beantwortet Status 
Datum: 11:44 Do 02.12.2004
Autor: Kritiker

Hi Leute
Die senkrechten Kugelwände sind Tangentialebenen der Kugel und der Abstand vom Mittelpunkt wird größer wenn die Kugel von A auf der Raumdiagonalen "wandert". So weit so gut !
Aber was ist mit der abgeschnittenen Fläche? Diese steht doch nicht senkrecht zum Radius, oder ?!

Bezug
                                        
Bezug
Kugel im Würfel ?: Guter Ansatz
Status: (Antwort) fertig Status 
Datum: 15:42 Do 02.12.2004
Autor: Paulus

Hallo Kritiker

> Hi Leute
>  Die senkrechten Kugelwände sind Tangentialebenen der Kugel
> und der Abstand vom Mittelpunkt wird größer wenn die Kugel
> von A auf der Raumdiagonalen "wandert". So weit so gut !

Ja, dieser Ansatz ist sehr gut! Und: wenn die Ecke A im Koordinatenursprung liegt, haben dann die Koordinaten des Mittelpunktes nicht die Gestalt (t, t, t), wobei t zugleich der Abstand der senkrecheten Kugelwände, wie du sie nennst (ich würde sie eher Würfelwände taufen), ist. Das t ist dann wohl auch gerade der Radius der Kugel.

>  Aber was ist mit der abgeschnittenen Fläche? Diese steht
> doch nicht senkrecht zum Radius, oder ?!
>  

Na klar doch, jede Tangentialebene steht senkrecht auf dem Berührungsradius, wie sollte das denn anders gehen [verwirrt]

Ich würde jetzt einfach den Abstand des Punktes (t, t, t) zur abgeschnittenen Fläche berechnen. Mit wanderndem t wird der Abstand wohl, mindestens zu Beginn, immer kleiner. Stoppe die Wanderung doch einfach dort, wo der Abstand gerade den Wert t hat. Etwas Vorsicht ist geboten: der Abstand könnte auch negativ sein, am Schluss also die richtige Lösung herauspicken, bitte.

Das heisst:
1) bestimme die Ebenengleichung, und zwar in der Hesseschen Normalform.

2) Setze in dieser Gleichung für x, y und z jeweils t ein und setze das gleich t.

3) Löse nach t auf!

4) Wenn dieses t kleiner als die halbe Würfelkante ist (wie gross ist die eigentlich? EDIT: Ach ja, die Länge ist 6, ich Schlafmütze!), dann ist das die Lösung. Wenn das t aber grösser als die halbe Würfelkante ist, dann ist eben die halbe Würfelkante die gesuchte Länge des Radius.


Mit lieben Grüssen

Paul

Bezug
                                                
Bezug
Kugel im Würfel ?: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Do 02.12.2004
Autor: Kritiker

Hi Paulus
Erst einmal vielen Dank für die guten Tipps und Vorschläge.
Ich hab das ganze mal nach deinen Vorstellungen durchgerechnet und habe erhalten  [mm] t\approx1,537 [/mm] für den Radius.
Kann das stimmen?
Was ist eigentlich wenn die Kugel von der anderen Ecke beginnt zu "wandern" , könnte dann vielleicht ein größerer Wert als 1,537 rauskommen?

P.S.: Wer andern eine Bratwurst brät, der braucht ein Bratwurstbratgerät.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de