www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Kugelgleichung
Kugelgleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichung: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 18:41 So 05.11.2006
Autor: yildi

Aufgabe
Gib die Gleichung einer Kugel K mit folgender Eigenschaft an:

a) K berührt die 2,3-Ebene im Ursprung und hat den Radius r=8.
b) K geht durch den Punkt P(2/3/5) und berührt die 1,2-Ebene im Ursprung.

Moin!

Ich weiss zwar, dass zu einer Kugel die Gleichung x²+y²+z² = r² gehört, aber trotzdem kann ich die Gleichungen nicht aufstellen..

Kann mir jemand helfen ?

Danke!
yildi

        
Bezug
Kugelgleichung: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 So 05.11.2006
Autor: yildi

Ich glaub nun hab ichs doch selber rausbekommen...?

a) K: [mm] x^2+y^2+(z-4)^2 [/mm] = [mm] 8^2 [/mm]

b) K: [mm] x^2+y^2+z^2 [/mm] = 29

Bezug
        
Bezug
Kugelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 So 05.11.2006
Autor: Zwerglein

Hi, yildi,

> a) K berührt die 2,3-Ebene im Ursprung und hat den Radius
> r=8.
>  b) K geht durch den Punkt P(2/3/5) und berührt die
> 1,2-Ebene im Ursprung.
>  Moin!
>  
> Ich weiss zwar, dass zu einer Kugel die Gleichung x²+y²+z²
> = r² gehört,

Das gilt aber nur, wenn der Mittelpunkt der Kugel der Ursprung ist.
Andernfalls gilt:

[mm] (x-x_{M})^{2} [/mm] + [mm] (y-y_{M})^{2} [/mm] + [mm] (z-z_{M})^{2} [/mm] = [mm] r^{2} [/mm]

wobei der Kugelmittelpunkt [mm] M(x_{M} [/mm] ; [mm] y_{M} [/mm] ; [mm] z_{M}) [/mm] ist.

Nun zur ersten Aufgabe:
Wenn die Kugel die yz-Ebene im Ursprung berührt, dann muss der Mittelpunkt auf der x-Achse liegen und zwar (wegen des Radius') in 8 LE Entfernung.
Daher: M(8; 0; 0) oder M(0;0;-8)

Es gibt also 2 Lösungen!
Aber deren Gleichungen schaffst Du nun selbst!

Die zweite Aufgabe fängt ganz analog an:
Wenn die Kugel die xy-Ebene berührt, muss der Mittelpunkt auf der z-Achse liegen. Diesmal ist nur nicht klar, wie weit weg M liegt.
Daher: M(0;0;r)

Also: [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + [mm] (z-r)^{2} [/mm] = [mm] r^{2} [/mm]

Nun musst Du - um r zu berechnen - den Punkt P einsetzen!

Schaffst Du das?

(Ach ja: Die "Lösung" in Deiner Mitteilung passt natürlich nicht so ganz!)

mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de