www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Kugelkoordinaten
Kugelkoordinaten < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 So 03.04.2011
Autor: David90

Aufgabe
Berechnen Sie den Flächeninhalt des Nordpolargebietes (das ist das Gebiet nördlich des Polarkreises, d.h. nördlich von 66,55 Grad nördlicher Breite). Die Erde darf dabei näherungsweise als Kugel mit einem Radius von 6378 km angesehen werden. Eine Zeichnung und die Wahl passender Koordinaten kann hilfreich sein.

Hallo Leute, also ich komm bei der Aufgabe nicht weiter.
Ich würde Kugelkoordinaten vorschlagen und r=konstant=6378 [mm] \alpha \in [/mm] [0;23,45] und [mm] \gamma \in [/mm] [0,2 [mm] \pi] [/mm] aber über welche Funktion muss ich denn integrieren?:O
Gruß David

        
Bezug
Kugelkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 So 03.04.2011
Autor: XPatrickX

Hallo,

deine Ideen hören sich doch gut an. Und es gilt ja wohl:

[mm] $$Vol(V)=\int_V [/mm] 1 [mm] \; [/mm] dx$$

Gruß Patrick

Bezug
                
Bezug
Kugelkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 So 03.04.2011
Autor: David90

ja aber wir integrieren ja über eine fläche und nicht über ein volumen, d.h es ist ein zweifach-integral...

Bezug
                        
Bezug
Kugelkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 03.04.2011
Autor: XPatrickX

Sorry, du hast natürlich recht.


Parametrisiere die Fläche also entsprechend. (Wie Kugelkoordinaten nur dass du R konstant hälst). Dann kannst du das Flächenelement ausrechnen und losintegrieren.

Bezug
                                
Bezug
Kugelkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 So 03.04.2011
Autor: David90

ja aber hier liegt das problem...weiß weder die funktion noch die parametrisierung weißte:( kannst du mir da iwie helfen?
Gruß David

Bezug
                                        
Bezug
Kugelkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 So 03.04.2011
Autor: leduart

Hallo
du musst nur das flaechenelement in Kugelkoordinaten integrieren, nicht über eine Funktion.
vorstellung: du summierst über alle die Miniquadrate dA auf dem Kugelstück.
kannst du dA in Kugelkoordinaten?
gruss leduart


Bezug
        
Bezug
Kugelkoordinaten: zylindrische Projektion
Status: (Antwort) fertig Status 
Datum: 21:32 So 03.04.2011
Autor: Al-Chwarizmi


> Berechnen Sie den Flächeninhalt des Nordpolargebietes (das
> ist das Gebiet nördlich des Polarkreises, d.h. nördlich
> von 66,55 Grad nördlicher Breite). Die Erde darf dabei
> näherungsweise als Kugel mit einem Radius von 6378 km
> angesehen werden. Eine Zeichnung und die Wahl passender
> Koordinaten kann hilfreich sein.
>  Hallo Leute, also ich komm bei der Aufgabe nicht weiter.
>  Ich würde Kugelkoordinaten vorschlagen und
> r=konstant=6378 [mm]\alpha \in[/mm] [0;23,45] und [mm]\gamma \in[/mm] [0,2
> [mm]\pi][/mm] aber über welche Funktion muss ich denn
> integrieren?:O
>  Gruß David



Hallo David,

es gäbe für diese Aufgabe eine Lösung, die auf die
Arbeiten von Archimedes von vor über 2250 Jahren
zurück geht. Die Idee ist die, dass die zylindrische
Projektion, bei welcher jeder Punkt der Kugelober-
fläche auf den ihm am nächsten gelegenen Punkt
der Zylinderfläche projiziert wird, welche die Kugel
entlang des Äquators berührt, flächentreu ist.
Auf dieser Idee beruht auch die Formel für den
Flächeninhalt einer Kugelkappe, die man in Formel-
sammlungen findet.

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de