www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kugeloberfläche
Kugeloberfläche < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugeloberfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Sa 21.06.2008
Autor: marc62

Aufgabe
r(u,v)= [mm] \begin{pmatrix} cosu*sinv\\ sinu*sinv \\ cosv \end{pmatrix} [/mm]
[mm] 0\le u\le 2*\pi, 0\le v\le \pi [/mm]

Zeigen sie das es sich um die Oberfläche einer Kugel mit Mittelpunkt im Ursprung handelt!

Kann mir einer sagen wie ich das schlüssig erklären soll ??


        
Bezug
Kugeloberfläche: Tipp
Status: (Antwort) fertig Status 
Datum: 20:21 Sa 21.06.2008
Autor: Al-Chwarizmi


> r(u,v)= [mm] \begin{pmatrix} cosu*sinv\\ sinu*sinu \\ cosv \end{pmatrix}[/mm]
>  
> [mm]0\le u\le 2*\pi, 0\le v\le \pi[/mm]
>  
> Zeigen sie das es sich um die Oberfläche einer Kugel mit
> Mittelpunkt im Ursprung handelt!
>  Kann mir einer sagen wie ich das schlüssig erklären soll
> ??
>

Du solltest zeigen:

1.) Alle Vektoren [mm] \vec{r}(u,v) [/mm] dieser Form haben den gleichen Betrag R.
     (Definition der Sphäre !)

2.) Jeder Punkt auf der Sphäre (Radius R, Mittelpunkt O) lässt
     sich durch einen solchen Vektor [mm] \vec{r}(u,v) [/mm] darstellen.

LG
  


Bezug
                
Bezug
Kugeloberfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 So 22.06.2008
Autor: marc62

Also der Betrag wäre dann [mm] \wurzel {x^2+y^2+z^2} [/mm]

[mm] \wurzel{cos^2u*sin^2v + sin^2u*sin^2v+cos^2v} [/mm]

Bezug
                        
Bezug
Kugeloberfläche: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 13:41 So 22.06.2008
Autor: Loddar

Hallo Marc!


> Also der Betrag wäre dann [mm]\wurzel{cos^2u*sin^2v + sin^2u*sin^2v+cos^2v}[/mm]  

[ok] Klammere nun bei den ersten beiden Termen [mm] $\sin^2(v)$ [/mm] aus und denke anschließend auch an den trigonometrischen Pythagoras.


Gruß
Loddar



Bezug
                                
Bezug
Kugeloberfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 22.06.2008
Autor: marc62

OK , das Ergebniss ist 1 .

Und das belegt jetzt das es sich um eine Kugel mit dem Mittelpunkt in Ursprung handelte? ??

Bezug
                                        
Bezug
Kugeloberfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 So 22.06.2008
Autor: koepper

Hallo,

> OK , das Ergebniss ist 1 .
>
> Und das belegt jetzt das es sich um eine Kugel mit dem
> Mittelpunkt in Ursprung handelte? ??

noch nicht ganz.
Das heißt nur, daß alle Punkte auf einer Kugel mit Radius 1 um den Ursprung liegen.
Es heißt noch nicht, daß jeder Punkt der Kugel auch so dargestellt werden kann.

LG
Will


Bezug
                                                
Bezug
Kugeloberfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 So 22.06.2008
Autor: marc62

OK , und wie kann ich  das zeigen ?

Bezug
                                                        
Bezug
Kugeloberfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 22.06.2008
Autor: Al-Chwarizmi


> OK , und wie kann ich  das zeigen ?

du könntest dir z.B. geometrisch klar machen,
was passiert, wenn u einen fixen Wert [mm] u_0 [/mm] hat
und nur v von 0 bis [mm] \pi [/mm] läuft. Welche Kurve
durchläuft dann der Punkt (x/y/z) ?

oder umgekehrt: [mm] v=v_0 [/mm] festhalten, u variieren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de