www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Kunita-Watanabe Ungleichung
Kunita-Watanabe Ungleichung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kunita-Watanabe Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 12.07.2011
Autor: Mr.Teutone

In einem Buch (Durrett: Stochastic Calculus) ist die Kunita-Watanabe Ungleichung wie folgt gegeben:
[mm] \[\int_0^{\infty}|H_sK_s|d|\langle X,Y\rangle|_s \le\left(\int_0^{\infty}H_s^2d\langle X\rangle_s\int_0^{\infty}K_s^2d\langle X\rangle_s \right)^{\frac12}\quad\text{a.s.},\] [/mm]

wobei [mm] $\var [/mm] X$ und [mm] $\var [/mm] Y$ lokale Martingale und [mm] $\var [/mm] H$ und [mm] $\var [/mm] K$ messbare Prozesse sind. Mit [mm] $|\langle X,Y\rangle|_s$ [/mm] ist die totale Variation von [mm] $r\to\langle X,Y\rangle_r$ [/mm] auf [mm] $\var [/mm] [0,s]$ gemeint. [mm] $\langle .\rangle$ [/mm] ist der "bracket process" und Integrale sind im Lebesgue-Stieltjes Sinne zu verstehen...

In einem Beweis aus dem selben Buch wird nun behauptet, dass aus der obigen Ungleichung [mm] $|\langle X,Y\rangle|_t \le\big(\langle X\rangle_t\langle Y\rangle_t\big)^{\frac12}$ [/mm] folgt. Das verstehe ich aber nicht so wirklich:

Vorschlag: In der Kunita-Watanabe Ungleichung vielleicht $H=K=1$ einsetzen:

[mm] \[ |\langle X,Y\rangle|_t =\int_0^td|\langle X,Y\rangle|_s \le\left(\int_0^td\langle X\rangle_s\int_0^td\langle X\rangle_s \right)^{\frac12} =\big(\langle X\rangle_t\langle Y\rangle_t\big)^{\frac12}.\] [/mm]

Dann hätte ich, was ich haben will, allerdings habe ich als obere Integrationsgrenze einfach [mm] $\var [/mm] t$ statt [mm] $\infty$ [/mm] geschrieben. Ist das überhaupt richtig und wenn ja, hat jemand eine Idee, warum ich das tun darf?

Vielen Dank schonmal fürs Interesse.

        
Bezug
Kunita-Watanabe Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Di 12.07.2011
Autor: Blech

Hi,


[mm] $K_s= H_s [/mm] = [mm] 1_{[0,t]}(s)$ [/mm]

oder?


ciao
Stefan

Bezug
                
Bezug
Kunita-Watanabe Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Di 12.07.2011
Autor: Mr.Teutone

Ähm, ja natürlich... Vielen Dank. ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de