www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Kursnavigation
Kursnavigation < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kursnavigation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 So 09.09.2007
Autor: kathea

Aufgabe
Bestimmen Sie den tatsächlichen Kurs [mm] \vec{v}_{r} [/mm] eines Motorboots sowohl zeichnerisch als auch rechnerisch.
gepeilter Kurs: [mm] \vec{v}_{B} [/mm] = 6 sm/h 20°, Meeresströmung: [mm] \vec{v}_{s} [/mm] = 2 sm/h 150°

Maßstab: 1 sm/h = 2 cm

Hi,
mal wieder habe ich eine kleine Hilfestellung von euch nötig. Ich habe Probleme mit der rechnerischen Lösung die Zeichnung, denke ich sollte ganz in Ordnung sein. Aber ich setze sie lieber noch mal mit hinein ist aber nicht 100%ig genau da ich es mit "Word" grob dargestellt habe.
[a]Datei-Anhang
Also das Problem bei mir ist, dass ich bei dem tatsächlichen Kurs Probleme mit den Graden habe aber erst mal mein Rechenweg:

[mm] \vec{v}_{B} [/mm] - [mm] \vec{v}_{s} [/mm] = [mm] \vec{v}_{r} [/mm]

6sm/h - 2sm/h = 4 sm/h --> das ist nach meiner Rechnung die Geschwindigkeit bin mir aber nicht ganz sicher ob das alles so richtig ist, mit der Gradangabe ist es für mich ziemlich schwierig weil ich auch einfach kein Anfang finde ich kann schließlich nicht einfach 150° von 20° abziehen und auch nicht andersherum, denke ich zumindest mal.

Wäre echt nett wenn ihr mir mal wieder helfen könntet

Danke
kathea

Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
        
Bezug
Kursnavigation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 So 09.09.2007
Autor: sunshinekid

Die Geschwindigkeit kannst du über den Kosinussatz berechnen:

[mm] \vec{v}_{r}^{2}=\vec{v}_{B}^{2}+\vec{v}_{s}^{2}-2*\vec{v}_{B}*\vec{v}_{s}*cos(130°) [/mm]
(Der Winkel lässt sich aus der Differenz der beiden Winkel berechnen.)

Dann kommst du auf [mm] \approx [/mm] 7,44

Der gesuchte Winkel lässt sich dann so errechnen, dass du zu dem Winkel zwischen der gepeilten Richtung und der wirklichen Richtung noch die 20° addierst.

Also:

Der Winkel zwischen den Geschwindigkeiten lässt sich dann mit dem Sinussatz errechnen.

[mm] sin(\gamma)/\vec{v}_{s}=sin(130°)/\vec{v}_{r} [/mm]

Dass nach [mm] \gamma [/mm] umgestellt ergibt ca. 38°

Jetzt noch die 20° addiert und du hast deinen gesuchten Winkel von [mm] \approx [/mm] 58°

Hoffe, dass ich dir helfen konnte


Bezug
                
Bezug
Kursnavigation: Alles geklärt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 10.09.2007
Autor: kathea

Hallo sunshinekid,

super vielen lieben Dank, dass du dir die Mühe gemacht hast meine Frage zu beantworten. Konnte mir das aber erst heute angucken, so dass ich die Lösung im Matheunterricht bekommen habe.


Aber trotzdem nochmal Danke

kathea

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de