www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Kurve
Kurve < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 08.07.2006
Autor: papillon

Aufgabe
Gegeben sei die Kurve
[mm] \wurzel{x}+\wurzel{y} [/mm] = [mm] \wurzel{a}, [/mm] a>0, [mm] 0\lex\lea [/mm]

Zu bestimmen ist die Fläche die von x=0, y=0 und der Kuve begrenzt wird!

Hallo!

Zunächst mal habe ich die Gleichung in Parameterform umgeschrieben:

[mm] x(t)=t^{2} [/mm] ,   [mm] y(t)=t^{2}-2\wurzel{a}t+a [/mm]

Dann habe ich in folgende Formel eingesetzt: A =  [mm] \integral_{a}^{b}{y dx}, [/mm] wobei wir gelernt haben dass man diese formel "im Uhrzeigersinn" durchlaufen muss.

Deswegen habe ich als integrationsgrenzen gewählt:  0.5 [mm] \pi [/mm] bis 0

Es ergibt sich also:

  [mm] \integral_{\bruch{\pi}{2}}^{0}{(t^{2}-2\wurzel{a}t+a) dt^{2}} [/mm] = ... = [mm] -\bruch{\pi^{4}}{16}+\bruch{\wurzel{a}\pi^{3}}{6}-\bruch{a\pi^{2}}{4} [/mm]

Ist das richtig, stimmt's nu ansatzweise oder ist das totaler Blödsinn? Ist leider die erste aufgabe diesen typs, die ich berechne.

Danke schonmal!

        
Bezug
Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Sa 08.07.2006
Autor: Leopold_Gast

Warum machst du das so kompliziert (und falsch)? Das ist doch Schulstoff!

[mm]\sqrt{x} + \sqrt{y} = \sqrt{a}[/mm]

Diese Gleichung ist symmetrisch in [mm]x,y[/mm]. Daher ist die Kurve symmetrisch zur Winkelhalbierenden des I. Quadranten. Wenn man zunächst nach [mm]\sqrt{y}[/mm] auflöst, bekommt man

[mm]\sqrt{y} = \sqrt{a} - \sqrt{x}[/mm]

Da die linke Seite nichtnegativ ist, muß es auch die rechte sein. Zulässig für [mm]x[/mm] sind also die Werte [mm]0 \leq x \leq a[/mm]. Und jetzt noch quadrieren gibt

[mm]y = \left( \sqrt{a} - \sqrt{x} \right)^2 \, , \ \ 0 \leq x \leq a[/mm]

Wenn man sich die Ableitung anschaut:

[mm]\frac{\mathrm{d}y}{\mathrm{d}x} = - \frac{\sqrt{a} - \sqrt{x}}{\sqrt{x}} \, , \ \ 0 < x \leq{a}[/mm]

so stellt man fest, daß die Kurve streng monoton vom Punkt [mm](0,a)[/mm], mit unendlicher negativer Steigung beginnend, zum Punkt [mm](a,0)[/mm], mit Steigung 0 einmündend, fällt. Sie hat also Ähnlichkeit mit einem Viertelkreis. Und jetzt muß nichts anderes als

[mm]\int_0^a~\left( \sqrt{a} - \sqrt{x} \right)^2~\mathrm{d}x[/mm]

berechnet werden. Wie in der Schule.

Bezug
                
Bezug
Kurve: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:46 So 09.07.2006
Autor: papillon

Ah, das stimmt allerdings. wenn ich es so mache, dann komme ich auf einen flächeninhalt von [mm] \bruch{a^{2}}{6} [/mm] . Kann das jemand bestätigen?

Aber gibt es da keine möglichkeit, das irgendwie anders zu machen? Ich war davon ausgegangen, dass es nicht so einfach ist.

Vielen Dank!

Bezug
                        
Bezug
Kurve: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 11.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de