www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Kurve Frage
Kurve Frage < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurve Frage: Ergebnis überprüfung
Status: (Frage) beantwortet Status 
Datum: 18:51 Mo 16.10.2006
Autor: Blaub33r3

Aufgabe
gesucht ist die Fläche im intervall[0;2] von der funktion f(x) = cos (x)

Meine Frage: ist das Ergebnis 1FE ???


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurve Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mo 16.10.2006
Autor: hase-hh

moin,

Stammfunktion von cos x ist sin x, also

F=sin x

A=sin2 - sin 0

A=0,90929... FE


oder nicht?!

gruss
wolfgang

Bezug
                
Bezug
Kurve Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 16.10.2006
Autor: Blaub33r3

Aufgabe
Nein, meiner "Meinung" nach is das falsch^^ weil...->

Cos, hab bei pi/2 ne Nullstelle bzw bei 1.571 und deshalb integriere ich einmal von 0 bis 1.571 und dann von 1.571 bis 2....deshalb komme ich auch 1...

Sag mir mal bitte ob das schwachsinn is, was ich gemacht hab....aber bitte mit einer begründung :D?

THX, lg ich

Bezug
                        
Bezug
Kurve Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 16.10.2006
Autor: DesterX

Hallo!
Ja, ich würde sagen mit den Grenzen hast du recht...
aber "1" erhalte ich dennoch nicht -
| [mm] \integral_{0}^{\bruch{\pi}{2}}{cos(x) dx} [/mm] | + | [mm] \integral_{\bruch{\pi}{2}}^{2}{cos(x) dx} [/mm] |
=...= 1+1-sin(2)
Gruß
DesterX

Bezug
                
Bezug
Kurve Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mo 16.10.2006
Autor: DesterX

meine erste überlegung war:
integrieren von 0 bis [mm] \bruch{\pi}{2} [/mm] (erste NS) und dann von [mm] \bruch{\pi}{2} [/mm] bis 2 !?
dann kommt 2-sin(2) raus...
entschuldigt, wenn ich falsch liege... !?

Bezug
                        
Bezug
Kurve Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Mo 16.10.2006
Autor: hase-hh

moin,

ja du hast natürlich recht, ich muss das intervall in zwei teilintervalle zerlegen...

[mm] A_{1}= sin(\bruch{\pi}{2}) [/mm] - sin(0) = 1

[mm] A_{2}= [/mm] | sin(2) -  [mm] sin(\bruch{\pi}{2}) [/mm] |

[mm] A_{2}= [/mm] | 0,9093 - 1 |

[mm] A_{2}=0,0907 [/mm]  

A= 1+0,0907    

oder nicht?





Bezug
                                
Bezug
Kurve Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Mo 16.10.2006
Autor: DesterX

hi!
genau ;)
so ist es richtig...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de