www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Kurve in \IR^{3}
Kurve in \IR^{3} < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurve in \IR^{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 06.07.2011
Autor: Kugelrund

Aufgabe
Eine Kurve im [mm] \IR^{3}, [/mm] die im Ursprung beginnt, sei gegeben durch


f(t) := [mm] \pmat{ at(3-t^{2}) \\ 3at^{2} \\ at(3+t^{2}) } [/mm]

für eine Konstante a [mm] \in \IR^{+} [/mm]


a) Berechnen Sie die Ableitung [mm] \bruch{ds}{dt} [/mm] der Weglänge s nach dem Parameter t.

b) Berechnen sie die Länge des Teilstücks der Kurve, das vom Ursprung bis zum Punkt [mm] (2a,3a,4a)^{T} [/mm] verläuft.

c) Betsimmen sie den Krümmungsradius der Kurve in jedem Punkt (in Abhängigkeit des Wegparameters t)

Zu a ) habe ich als ergebniss : [mm] \bruch{ds}{dt} \wurzel{18}a [/mm] + [mm] \wurzel{18} at^{2} [/mm]

So ich weiss, dass ihr sowas nicht hören wollt, aber es ist wirklich wirklich wichtig. Ich saß den ganzen Tag an der Aufgabe, die Punkte sind ganz wichtig damit ich die Zulassung bekomme.

Ich habe echt keine Idee zu b und c. Habe mir so einige Definitionen angeschaut, aber komme einfach nicht weiter.

Helft mir bitte

        
Bezug
Kurve in \IR^{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 06.07.2011
Autor: abakus


> Eine Kurve im [mm]\IR^{3},[/mm] die im Ursprung beginnt, sei gegeben
> durch
>  
>
> f(t) := [mm]\pmat{ at(3-t^{2}) \\ 3at^{2} \\ at(3+t^{2}) }[/mm]
>  
> für eine Konstante a [mm]\in \IR^{+}[/mm]
>  
>
> a) Berechnen Sie die Ableitung [mm]\bruch{ds}{dt}[/mm] der Weglänge
> s nach dem Parameter t.
>  
> b) Berechnen sie die Länge des Teilstücks der Kurve, das
> vom Ursprung bis zum Punkt [mm](2a,3a,4a)^{T}[/mm] verläuft.
>  
> c) Betsimmen sie den Krümmungsradius der Kurve in jedem
> Punkt (in Abhängigkeit des Wegparameters t)
>  Zu a ) habe ich als ergebniss : [mm]\bruch{ds}{dt} \wurzel{18}a[/mm]
> + [mm]\wurzel{18} at^{2}[/mm]
>  
> So ich weiss, dass ihr sowas nicht hören wollt, aber es
> ist wirklich wirklich wichtig. Ich saß den ganzen Tag an
> der Aufgabe, die Punkte sind ganz wichtig damit ich die
> Zulassung bekomme.
>  
> Ich habe echt keine Idee zu b und c. Habe mir so einige
> Definitionen angeschaut, aber komme einfach nicht weiter.
>  

Hallo,
zu b)
Der Punkt  [mm](2a,3a,4a)^{T}[/mm] wird erreicht, wenn t den Wert 1 hat (und für t=0 bist du im Ursprung).
Suche also in deinen Mitschriften nach einer Formel für die Kurvenlänge.
Darin wird sicher irgendein Integral drin vorkommen; deine Integrationsgrenzen sind t=0 und t=1.
Gruß Abakus

> Helft mir bitte


Bezug
        
Bezug
Kurve in \IR^{3}: a)
Status: (Antwort) fertig Status 
Datum: 21:43 Mi 06.07.2011
Autor: Al-Chwarizmi


> Eine Kurve im [mm]\IR^{3},[/mm] die im Ursprung beginnt, sei gegeben
> durch
>  
>
> f(t) := [mm]\pmat{ at(3-t^{2}) \\ 3at^{2} \\ at(3+t^{2}) }[/mm]
>  
> für eine Konstante a [mm]\in \IR^{+}[/mm]
>  
>
> a) Berechnen Sie die Ableitung [mm]\bruch{ds}{dt}[/mm] der Weglänge
> s nach dem Parameter t.
>  
> b) Berechnen sie die Länge des Teilstücks der Kurve, das
> vom Ursprung bis zum Punkt [mm](2a,3a,4a)^{T}[/mm] verläuft.
>  
> c) Betsimmen sie den Krümmungsradius der Kurve in jedem
> Punkt (in Abhängigkeit des Wegparameters t)


>  Zu a ) habe ich als ergebniss :

>  [mm]\bruch{ds}{dt} \wurzel{18}a\ +\ \wurzel{18} at^{2}[/mm]    [haee]

Vermutlich richtig gemeint, aber das Gleichheitszeichen
vergessen. Zudem würde ich ausklammern:

      [mm]\bruch{ds}{dt}\ =\ \wurzel{18}*a*(1+t^2)[/mm]

(und ev. noch die Wurzel zerlegen)

LG   Al-Chw.
  


Bezug
                
Bezug
Kurve in \IR^{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mi 06.07.2011
Autor: Kugelrund

Ja stimmt, da musste ein = Zeichen zwischen ....

Hmmm meinst du sowas : s(t) = [mm] \integral_{t}^{a}{f´(r) dr} [/mm]

Bezug
                        
Bezug
Kurve in \IR^{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 06.07.2011
Autor: Al-Chwarizmi


> Ja stimmt, da musste ein = Zeichen zwischen ....
>  
> Hmmm meinst du sowas : s(t) = [mm]\integral_{t}^{a}{f´(r) dr}[/mm]


soll die Frage an mich gehen oder an abakus ?

Falls du die Bogenlänge meinst:   s(t) = [mm]\integral_{0}^{t}\,ds[/mm]

und zu c):

eine geeignete Formel findest du z.B.  []da.

Das Ergebnis vereinfacht sich zu einem sehr handlichen Term !

LG    Al-Chw.


Bezug
        
Bezug
Kurve in \IR^{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 06.07.2011
Autor: leduart

Hallo
wenn du ds/dt richtig hast musst du doch nur ds=ds/dt*dt integrieren um s zu finden.
Krümmungsradius r  die Formel für die Krümmung k=1/r  steht in deiner Mitschrift (oder in wiki) einfach einsetzen!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de