www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Kurven- bzw Linienintegral
Kurven- bzw Linienintegral < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurven- bzw Linienintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Sa 31.01.2009
Autor: brichun

Aufgabe
Man berechne die Bogenlänge einer Kettenline [mm] y=\cosh x[/mm]
für  [mm] -2
Paramterdarstellung:

[mm] x(t) = t , y(t)= \cosh t[/mm]

ich hab die Kettenlinie in ein xy Ko.system gezeichnet.

ich verstehe nicht wieso man für die Parameter in x Richtung
einfach sagen kann dass

[mm] x(t) = t [/mm]  ist

Es ist ein grundlegendes Verständnisproblem kann mir jemand auf die Sprünge helfen?

Danke  





        
Bezug
Kurven- bzw Linienintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 31.01.2009
Autor: XPatrickX

Hallo,

die Parametrisierung von Funktionen [mm] $f(x):M\to\IR$ [/mm] ist besonders einfach, denn sie lautet einfach: [mm] $x\mapsto(x,f(x))$. [/mm]

Gruß Patrick

Bezug
                
Bezug
Kurven- bzw Linienintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Sa 31.01.2009
Autor: brichun

kannst du es mir auch in Worten erklären irgendwie komm ich mit der mathematischen Schreibweise nicht klar

Bezug
                        
Bezug
Kurven- bzw Linienintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Sa 31.01.2009
Autor: leduart

Hallo
Denk dir einfach die Zeit laeuft auf der x Achse kontinuierlich ab, dann ist es beinahe nur ne Umbenennung.
Nur im einen Fall hat man ne Funktion y=f(x) und deren Graph, fasst es Also als Abbildung von [mm] R^1 [/mm] nach [mm] R^1 [/mm] auf, im anderen Fall hat man eine Beschreibung einer Kurve im [mm] R^2, [/mm] also eine Abbildung von R nach [mm] R^2. [/mm]
man kann als parameter irgendwas nehmen, also t irgendwie auf x abbilden, hier ist es einfach die einfachst abbildung x=t
Um nochmal den Unterschied zwischen Kurve und Graph zu sagen.
stell dir t als Zeit vor. dann gibt x(t),y(t) dir in jedem Zeitpunkt an, wo du grade in der Ebene Bist.
Hier wurde es so gemacht, dass du dich in x- Richtung grade mit der Geschwindigkeit 1 bewegst, in y Richtung halt was komplizierter.
Gruss leduart

Bezug
                                
Bezug
Kurven- bzw Linienintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 So 01.02.2009
Autor: brichun

Danke schön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de