www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Kurven
Kurven < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Do 12.07.2012
Autor: Bodo0686

Aufgabe
Bestimmen Sie die Krümmung der folgenden Kurve:

c(t)= [mm] (6t,3t^2,t^3) [/mm]


Hallo, könnt ihr mir helfen?

Ich habe alles soweit ausgerechnet nur ich hänge bei einer Sache.

K(t)= [mm] \frac{||c'(t) \times c''(t)||}{||c'(t)||^3} [/mm]

[mm] ||c'(t)\times c''(t)||=(18t^2-36t+36)^\frac{1}{2} [/mm]
[mm] ||c'(t)||^3 [/mm] = [mm] (36+36t^2+9t^4)^\frac{3}{2} [/mm]

Jetzt:

K(t)= [mm] \frac{||c'(t) \times c''(t)||}{||c'(t)||^3} [/mm] = [mm] \frac{(18t^2-36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2} } [/mm]

Wie muss ich jetzt hier weitermachen? Als Ergebnis muss hier [mm] \frac{2}{3\cdot(2+t^2)^2} [/mm] rauskommen, aber ich weiß nicht wie?!

Bitte um Hilfe! Danke und Grüße


        
Bezug
Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Do 12.07.2012
Autor: M.Rex

Hallo


> Bestimmen Sie die Krümmung der folgenden Kurve:
>  
> c(t)= [mm](6t,3t^2,t^3)[/mm]
>  
> Hallo, könnt ihr mir helfen?
>  
> Ich habe alles soweit ausgerechnet nur ich hänge bei einer
> Sache.
>  
> K(t)= [mm]\frac{||c'(t) \times c''(t)||}{||c'(t)||^3}[/mm]
>  
> [mm]||c'(t)\times c''(t)||=(18t^2-36t+36)^\frac{1}{2}[/mm]
>  
> [mm]||c'(t)||^3[/mm] = [mm](36+36t^2+9t^4)^\frac{3}{2}[/mm]
>
> Jetzt:
>  
> K(t)= [mm]\frac{||c'(t) \times c''(t)||}{||c'(t)||^3}[/mm] = [mm]\frac{(18t^2-36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2} }[/mm]
>
>  
> Wie muss ich jetzt hier weitermachen? Als Ergebnis muss
> hier [mm]\frac{2}{3\cdot(2+t^2)^2}[/mm] rauskommen, aber ich weiß
> nicht wie?!
>

Das wird nicht ganz klappen, denn:

[mm] $\frac{(18t^2-36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2} }$ [/mm]
[mm] $=\frac{\sqrt{18t^2-36t+36}}{(\sqrt{36+36t^2+9t^4})^{3}}$ [/mm]
[mm] $=\frac{\sqrt{18(t^2-2t+2)}}{(\sqrt{9(4+4t^2+t^4)})^{3}}$ [/mm]
[mm] $=\frac{\sqrt{18(t^2-2t+2)}}{(\sqrt{9((2+t^{2})^{2}})^{3}}$ [/mm]
[mm] $=\frac{\sqrt{18(t^2-2t+2)}}{(27(2+t^{2}))^{3}}$ [/mm]

Im Nenner kannst du nun nicht vernünftig ausklammern/Vereinfachen, dass die Wurzel verschwindet.

Hättest du
[mm] $\frac{(\red{9}t^2-36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2} }$ [/mm]

würde es etwas besser funktionieren, denn:

[mm] $\frac{(9t^2-36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2} }$ [/mm]
[mm] $=\frac{\sqrt{9(t^2-4t+4}}{(\sqrt{36+36t^2+9t^4})^{3}}$ [/mm]
[mm] $=\frac{\sqrt{9(t-2)^{2}}}{(\sqrt{9(4+4t^2+t^4)})^{3}}$ [/mm]
[mm] $=\frac{3(t-2)}{(27(2+t^{2}))^{3}}$ [/mm]
[mm] $=\frac{t-2}{9(2+t^{2})^{3}}$ [/mm]

Aber auch das führt nicht zun gewünschten Ergebnis.

Kannst du uns mal deine Rechungen zu [mm] $||c'(t)\times c''(t)||=(18t^2-36t+36)^\frac{1}{2}$ [/mm] und zu [mm] $||c'(t)||^3=(36+36t^2+9t^4)^\frac{3}{2}$ [/mm]
zeigen?

> Bitte um Hilfe! Danke und Grüße
>  

Marius


Bezug
                
Bezug
Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Do 12.07.2012
Autor: Bodo0686

Hallo,

also ich habe:

[mm] c(t)=(6t,3t^2,t^3) [/mm]
[mm] c'(t)=(6,6t,3t^2), [/mm] c''(t)=(0,6,6t)

[mm] ||c'(t)\times [/mm] c''(t)|| = ((6t * 6t) - [mm] 3t^2 [/mm] * 6 - (6* 6t - 0) + 6* 6 - 6t * [mm] 0)^\frac{1}{2} [/mm] = [mm] (36t^2-18t^2-36t+36)^\frac{1}{2}=(18t^2-36t+36)^\frac{1}{2} [/mm]

[mm] ||c'(t)||^3=||(6)^2,(6t)^2,(3t^2)^2||^\frac{1}{2}=((36+36t^2+9t^4)^\frac{1}{2})^3 [/mm]


Grüße

Bezug
                        
Bezug
Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Do 12.07.2012
Autor: schachuzipus

Hallo Bodo,


> Hallo,
>  
> also ich habe:
>  
> [mm]c(t)=(6t,3t^2,t^3)[/mm]
>  [mm]c'(t)=(6,6t,3t^2),[/mm] c''(t)=(0,6,6t)
>  
> [mm]||c'(t)\times[/mm] c''(t)|| = ((6t * 6t) - [mm]3t^2[/mm] * 6 - (6* 6t -
> 0) + 6* 6 - 6t * [mm]0)^\frac{1}{2}[/mm] =
> [mm](36t^2-18t^2-36t+36)^\frac{1}{2}=(18t^2-36t+36)^\frac{1}{2}[/mm]
>  
> [mm]||c'(t)||^3=||(6)^2,(6t)^2,(3t^2)^2||^\frac{1}{2}=((36+36t^2+9t^4)^\frac{1}{2})^3[/mm]

Ah, das ist schlecht zu lesen, mache bei den Formelzeilen ein Dollarzeichen zu Beginn und eines am Ende ...

Es ist doch zunächst [mm]c'(t)\times c''(t)=\vektor{18t^2\\ -36t\\ 36}[/mm]

Und damit [mm]||c'(t)\times c''(t)||=\left|\left|\vektor{18t^2\\ -36t\\ 36}\right|\right|=\ldots[/mm]

Und was hast du da bei [mm]||c'(t)||^3[/mm] geschrieben?

Es ist [mm]||c'(t)||=\left(36+36t^2+9t^4\right)^{\frac{1}{2}}[/mm]

Was sollen nach deinem ersten "=" die Normstriche bedeuten?

>  
>
> Grüße

Gruß

schachuzipus


Bezug
                                
Bezug
Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 12.07.2012
Autor: Bodo0686

Also ist es:

$ [mm] ||c'(t)\times c''(t)||=\left|\left|\vektor{18t^2\\ -36t\\ 36}\right|\right|=(18t^2+36t+36)^\frac{1}{2} [/mm] $ (aufgrund der Norm wird alles zu plus, oder?

$ [mm] ||c'(t)||^3=((36+36t^2+9t^4)^\frac{3}{2}) [/mm] $

$ [mm] \frac{||c'(t)\times c''(t)||}{||c'(t)||^3}=\frac{(18t^2+36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2}}=\frac{(18(t^2+2t+2))^\frac{1}{2}}{9(t^4+4t^2+4)^\frac{3}{2}}=3\cdot\frac{(2(t^2+2t+2))^\frac{1}{2}}{9(t^2+2)^3}=\frac{1}{3}\frac{(2(t^2+2t+2))^\frac{1}{2}}{(t^2+2)^3} [/mm] $

Bezug
                                        
Bezug
Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Do 12.07.2012
Autor: fred97


> Also ist es:
>  
> [mm]||c'(t)\times c''(t)||=\left|\left|\vektor{18t^2\\ -36t\\ 36}\right|\right|=(18t^2+36t+36)^\frac{1}{2}[/mm]

Nein. die Norm [mm] =\wurzel{ (18t^2)^2+(-36t)^2+(36)^2} [/mm]

FRED


> (aufgrund der Norm wird alles zu plus, oder?


>  
> [mm]||c'(t)||^3=((36+36t^2+9t^4)^\frac{3}{2})[/mm]
>  
> [mm]\frac{||c'(t)\times c''(t)||}{||c'(t)||^3}=\frac{(18t^2+36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2}}=\frac{(18(t^2+2t+2))^\frac{1}{2}}{9(t^4+4t^2+4)^\frac{3}{2}}=3\cdot\frac{(2(t^2+2t+2))^\frac{1}{2}}{9(t^2+2)^3}=\frac{1}{3}\frac{(2(t^2+2t+2))^\frac{1}{2}}{(t^2+2)^3}[/mm]
>  


Bezug
                                                
Bezug
Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Do 12.07.2012
Autor: Bodo0686

$ [mm] \frac{||c'(t)\times c''(t)||}{||c'(t)||^3}=\frac{((18t^2)^2+(-36t)^2+(36)^2)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2}}=\frac{18(t^4+4t^2+4)^\frac{1}{2}}{(9(t^4+4t^2+4))^\frac{3}{2}}=\frac{18(t^2+2)}{(9(t^2+2))^3}=$ [/mm]

Bezug
                                                        
Bezug
Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Do 12.07.2012
Autor: schachuzipus

Hallo nochmal,


> [mm]\frac{||c'(t)\times c''(t)||}{||c'(t)||^3}=\frac{((18t^2)^2+(-36t)^2+(36)^2)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2}}=\frac{18(t^4+4t^2+4)^\frac{1}{2}}{(9(t^4+4t^2+4))^\frac{3}{2}}=\frac{18(t^2+2)}{(9(t^2+2))^3}=[/mm]

Der letzte Term stimmt nicht ganz: es ist [mm] $9^{3/2}=27$ [/mm]

Du hast also [mm] $\frac{18(t^2+2)}{27(t^2+2)^3}=\frac{2}{3(t^2+2)^2}$ [/mm] wie in der Lösung auch ...

Gruß

schachuzipus


Bezug
        
Bezug
Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Do 12.07.2012
Autor: fred97


> Bestimmen Sie die Krümmung der folgenden Kurve:
>  
> c(t)= [mm](6t,3t^2,t^3)[/mm]
>  
> Hallo, könnt ihr mir helfen?
>  
> Ich habe alles soweit ausgerechnet nur ich hänge bei einer
> Sache.
>  
> K(t)= [mm]\frac{||c'(t) \times c''(t)||}{||c'(t)||^3}[/mm]
>  
> [mm]||c'(t)\times c''(t)||=(18t^2-36t+36)^\frac{1}{2}[/mm]
>  
> [mm]||c'(t)||^3[/mm] = [mm](36+36t^2+9t^4)^\frac{3}{2}[/mm]
>
> Jetzt:
>  
> K(t)= [mm]\frac{||c'(t) \times c''(t)||}{||c'(t)||^3}[/mm] =
> [mm]\frac{(18t^2-36t+36)^\frac{1}{2}}{(36+36t^2+9t^4)^\frac{3}{2} }[/mm]
>  
> Wie muss ich jetzt hier weitermachen? Als Ergebnis muss
> hier [mm]\frac{2}{3\cdot(2+t^2)^2}[/mm] rauskommen, aber ich weiß
> nicht wie?!
>
> Bitte um Hilfe! Danke und Grüße
>  


||c'(t) [mm] \times [/mm]  c''(t)||  hast Du völlig vermurkst !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de