www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Kurvendiskussion
Kurvendiskussion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 06.09.2006
Autor: mareike-f

Ich habe diese Frage in keinem anderen Forum gestellt.

Hi,
wir sollen folgende Diskussion diskustieren

[mm]f(x)=\bruch{x^2+x}{e^x}[/mm]
mit der Qutientenregel weiter nach:
[mm]f'(x)= \bruch{((2x+1)*e^x)-((x^2+x)*e^x)}{(e^x)^2}[/mm]
[mm]=\bruch{2xe^x+e^x-x^2e^x+xe^x}{(e^x)^2}[/mm]
[mm]=\bruch{3xe^x+e^x-x^2e^x}{(e^x)^2}[/mm]
und das ganze nochmal:
[mm]f''(x)=\bruch{((3e^x+3xe^x+e^x-2xe^x+x^2e^x)*(e^x)^2)-((3xe^x+e^x-x^2e^x)*2e^x)}{(e^x)^4}[/mm]
[mm]=\bruch{4e^x+xe^x+x^2e^x-(6x(e^x)^2+2(e^x)^2-2x^2(e^x)^2)}{(e^x)^2}[/mm]
[mm]=\bruch{4e^x+xe^x+x^2e^x-6x(e^x)^2-2(e^x)^2+2x^2(e^x)^2}{(e^x)^2}[/mm]
eigentlich müsste ich jetzt noch die dritte Ableitung machen, aber irgendwie kann ich mir das nicht vorstellen das sie so lang ist.

D=R

Symmetrie: keine einfache Symmetrie

keine Asymptoten

Pole:
[mm]\limes_{x\rightarrow\+infty} \bruch{x^2+x}{e^x}=0[/mm]
[mm]\limes_{x\rightarrow\-infty} \bruch{x^2+x}{e^x}=\infty[/mm]
[mm]\limes_{x\rightarrow\+0} \bruch{x^2+x}{e^x}=0[/mm]
[mm]\limes_{x\rightarrow\-0} \bruch{x^2+x}{e^x}=-0[/mm]

NST:
[mm]0=x^2+x[/mm]
keine Nullstellen

Extrema
[mm]0=3xe^x+e^x-x^2e^x[/mm]
[mm]0=e^x (3x+1-x^2)[/mm]
[mm]0=3x+1-x^2[/mm]
[mm]0= -3x-1+x^2[/mm] auflösen mit pq-Formel
[mm]x_1=3,30[/mm]
[mm]y_1=0,52[/mm]
[mm]x_2=-0,3[/mm]
[mm]y_2=-0,28[/mm]

Wendestelle:
[mm]=4e^x+xe^x+x^2e^x-6x(e^x)^2-2(e^x)^2+2x^2(e^x)^2[/mm]
[mm]=e^x (4+x+x^2-6xe^x-2e^x+2x^2e^x)[/mm]
hier komme ich aber irgendwie nicht weiter.

Ich wäre für jegliche Hilfe und Korrektur dankbar.

Grüße,
Mareike

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 06.09.2006
Autor: M.Rex

Hallo Mareike

> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Hi,
>  wir sollen folgende Diskussion diskustieren
>  
> [mm]f(x)=\bruch{x^2+x}{e^x}[/mm]
>  mit der Qutientenregel weiter nach:
>  [mm]f'(x)= \bruch{((2x+1)*e^x)-((x^2+x)*e^x)}{(e^x)^2}[/mm]
>  
> [mm]=\bruch{2xe^x+e^x-x^2e^x+xe^x}{(e^x)^2}[/mm]
>  [mm]=\bruch{3xe^x+e^x-x^2e^x}{(e^x)^2}[/mm]

Wenn du hier noch einmal [mm] e^{x} [/mm] ausklammerst und dann kürzt, wirds einfacher.
Also f'(x) = [mm] \bruch{e^{x}(3x-1-x²)}{(e^{x})²} [/mm] = [mm] \bruch{-x²+3x-1}{e^{x}} [/mm]

Dann hast du auch keine Quadrate der e-Funktion mehr in der zweiten Ableitung.

>  und das ganze nochmal:
> [mm]f''(x)=\bruch{((3e^x+3xe^x+e^x-2xe^x+x^2e^x)*(e^x)^2)-((3xe^x+e^x-x^2e^x)*2e^x)}{(e^x)^4}[/mm]
>  
> [mm]=\bruch{4e^x+xe^x+x^2e^x-(6x(e^x)^2+2(e^x)^2-2x^2(e^x)^2)}{(e^x)^2}[/mm]
>  
> [mm]=\bruch{4e^x+xe^x+x^2e^x-6x(e^x)^2-2(e^x)^2+2x^2(e^x)^2}{(e^x)^2}[/mm]
>  eigentlich müsste ich jetzt noch die dritte Ableitung
> machen, aber irgendwie kann ich mir das nicht vorstellen
> das sie so lang ist.

Sie ist auch kützer (s.o.)

>  
> D=R

Korrekt

>  
> Symmetrie: keine einfache Symmetrie

Auch korrekt


>  
> keine Asymptoten
>  
> Pole:
>  [mm]\limes_{x\rightarrow\+infty} \bruch{x^2+x}{e^x}=0[/mm]
>  
> [mm]\limes_{x\rightarrow\-infty} \bruch{x^2+x}{e^x}=\infty[/mm]
>  
> [mm]\limes_{x\rightarrow\+0} \bruch{x^2+x}{e^x}=0[/mm]
>  
> [mm]\limes_{x\rightarrow\-0} \bruch{x^2+x}{e^x}=-0[/mm]

Der Graph hat keine Pole, wohl aber eine Asymptote.
[Dateianhang nicht öffentlich]


>  
> NST:
>  [mm]0=x^2+x[/mm]
>  keine Nullstellen

Halt, was ist mit x = 0 und x=-1?

>  
> Extrema
>  [mm]0=3xe^x+e^x-x^2e^x[/mm]
>  [mm]0=e^x (3x+1-x^2)[/mm]
>  [mm]0=3x+1-x^2[/mm]
>  [mm]0= -3x-1+x^2[/mm] auflösen mit pq-Formel
>  [mm]x_1=3,30[/mm]
>  [mm]y_1=0,52[/mm]
>  [mm]x_2=-0,3[/mm]
>  [mm]y_2=-0,28[/mm]
>  

Hier hast du einen Vorzeichenfehler drin.
[mm] 0=3xe^x+e^x-x^2e^x [/mm]
[mm] \gdw0=e^x [/mm] (3x -1 [mm] -x^2) [/mm]

Also per p-q Formel

[mm] x_{e_{1;2}} [/mm] = [mm] -\bruch{3}{2} \pm \wurzel{\bruch{9}{4} - 1} [/mm]
[mm] \Rightarrow x_{e_{1}} [/mm] = 0, [mm] x_{e_{2}} [/mm] = -3

> Wendestelle:
>  [mm]=4e^x+xe^x+x^2e^x-6x(e^x)^2-2(e^x)^2+2x^2(e^x)^2[/mm]
>  [mm]=e^x (4+x+x^2-6xe^x-2e^x+2x^2e^x)[/mm]
>  hier komme ich aber
> irgendwie nicht weiter.

Nimm die "Korrigierte" zweite Ableitung, das sollte klappen.

Hilft dir das weiter?

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                
Bezug
Kurvendiskussion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:42 Mi 06.09.2006
Autor: mareike-f

Hi,
super danke, deine Antwort hat mir weiter geholfen.

Blos eine Sache versteh ich nicht, wie bekommst du die Extremwerte raus?
Als ich das noch mal gerechnet hab, hab ich -2,62 und -0,38 raus und als ich deine pq-Formel eingetippt habe, habe ich auch nicht 0 und -1 rausbekommen.


Mareike

Bezug
                        
Bezug
Kurvendiskussion: Vorzeichenfehler i.d. Abl.
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 06.09.2006
Autor: ardik

Hallo


>  [mm]f'(x)= \bruch{((2x+1)*e^x)-((x^2+x)*e^x)}{(e^x)^2}[/mm]
>  
> [mm]=\bruch{2xe^x+e^x-x^2e^x\red{+}xe^x}{(e^x)^2}[/mm]

Das rote Plus ist falsch, da muss ein Minus hin.

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de