www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Nullstelle
Status: (Frage) beantwortet Status 
Datum: 20:15 Fr 04.02.2005
Autor: jjj

Hi Leute! Es geht um folgendes: Unser lieber Herr Mathelehrer hat die Funktion (x²-x-6)(x-1) angegeben. Wenn man das nun errechnet ergibt das x³-2x²-5x+6! Daraus muss dann die Nullstellen berechnet werden und dort liegt mein Problem! Wir haben bisher immer x ausgeklammert, aber in diesem Falle müsste dann ja auch die +6 durch x geteilt werden. Könnt ihr mir erklären wie ich in diesem Fall die Nullstellen berechen muss?
Danke schon mal!
JJJ
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvendiskussion: Polynomdivision??
Status: (Antwort) fertig Status 
Datum: 20:23 Fr 04.02.2005
Autor: elina

Hallo jjj.
hattet ihr noch nicht die polynomdivision durchgenommen?

elina

Bezug
        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Fr 04.02.2005
Autor: Disap


> Hi Leute! Es geht um folgendes: Unser lieber Herr
> Mathelehrer hat die Funktion (x²-x-6)(x-1) angegeben. Wenn
> man das nun errechnet ergibt das x³-2x²-5x+6! Daraus muss
> dann die Nullstellen berechnet werden und dort liegt mein
> Problem! Wir haben bisher immer x ausgeklammert, aber in
> diesem Falle müsste dann ja auch die +6 durch x geteilt
> werden. Könnt ihr mir erklären wie ich in diesem Fall die
> Nullstellen berechen muss?
>  Danke schon mal!
>  JJJ
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Also man kann eine Nullstelle raten und dann weiter mit der  MBPolynomdivision rechnen. Das wäre natürlich korrekt und auch noch für einen Mathe-LK eines Gymnasiums der 12.Klasse völlig ausreichend (wenn ihr andere Verfahren noch nicht hattet).
Oder aber du benutzt zur Bestimmung der Nullstellen das   MBNewton-Verfahren. Über ein bestimmtes Verfahren nähert man sich einer Nullstelle an. Ist aber in der Datenbank dieses Forums gut beschrieben. Deswegen verliere ich jetzt mal wenig Worte dazu.

Wenn du ein bisschen lesen möchtest:  MBNullstellenbestimmung. Das ist ziemliches Grundwissen!
Dann gibts natürlich auch noch andere Verfahren, aber wenn du schon fragst, wäre es blödsinnig, dir für "schwere" Verfahren einen Link zu geben.

Die Funktion ist natürlich ein sehr schönes Beispiel:

Eine Funktion n-ten Grades hat maximal n-Nullstellen.
Eine Funktion vierten Grades hat maximal vier Nullstellen.
Ich will darauf hinaus, dass deine Funktion drei Nullstellen hat.

Als Kontrollergebnis:
[mm] x_{1} [/mm] = 3
[mm] x_{2} [/mm] = -2
[mm] x_{3} [/mm] = 1

Liebe Grüße Disap

Bezug
        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Fr 04.02.2005
Autor: Sigrid

Hallo jjj,

> Hi Leute! Es geht um folgendes: Unser lieber Herr
> Mathelehrer hat die Funktion (x²-x-6)(x-1) angegeben. Wenn
> man das nun errechnet ergibt das x³-2x²-5x+6! Daraus muss
> dann die Nullstellen berechnet werden und dort liegt mein
> Problem! Wir haben bisher immer x ausgeklammert, aber in
> diesem Falle müsste dann ja auch die +6 durch x geteilt
> werden. Könnt ihr mir erklären wie ich in diesem Fall die
> Nullstellen berechen muss?

Dein Lehrer hat dir die Funktion so gegeben, dass du die Nullstellen sehr leicht ausrechnen kannst. Du solltest nur nicht ausmultiplizieren.

[mm] (x^2-x-6)(x-1) = 0 [/mm]
[mm] \gdw x^2-x-6 = 0 \vee x-1=0 [/mm]
Ein Produkt hat den Wert 0, wenn ein Faktor den Wert 0 hat.

Der Rest ist wohl kein Problem mehr für dich

Gruß Sigrid

>  Danke schon mal!
>  JJJ
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
Kurvendiskussion: übrigens ...
Status: (Antwort) fertig Status 
Datum: 22:21 Fr 04.02.2005
Autor: dominik

Übrigens:
f(x)=(x²-x-6)(x-1)
f(x)=(x-3)(x+2)(x-1)

Somit kann jeder Faktor der Reihe nach gleich Null sein und die Lösungen x=+3, x=-2 und x=+1 können direkt herausgelesen werden.

Viele Grüsse
dominik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de